1887

Abstract

Cellular mismatch and base-excision repair machineries have been shown to be involved in Epstein–Barr Virus (EBV) lytic DNA replication. We report here that nucleotide-excision repair (NER) may also play an important role in EBV lytic DNA replication. Firstly, the EBV BGLF4 kinase interacts with xeroderma pigmentosum C (XPC), the critical DNA damage-recognition factor of NER, in yeast and , as demonstrated by yeast two-hybrid and glutathione -transferase pull-down assays. Simultaneously, XPC was shown, by indirect immunofluorescence and co-immunoprecipitation assays, to interact and colocalize with BGLF4 in EBV-positive NA cells undergoing lytic viral replication. In addition, the efficiency of EBV DNA replication was reduced about 30–40 % by an XPC small interfering RNA. Expression of BGLF4 enhances cellular DNA-repair activity in p53-defective H1299/bcl2 cells in a host-cell reactivation assay. This enhancement was not observed in the XPC-mutant cell line XP4PA-SV unless complemented by ectopic XPC, suggesting that BGLF4 may stimulate DNA repair in an XPC-dependent manner. Overall, we suggest that the interaction of BGLF4 and XPC may be involved in DNA replication and repair and thereby enhance the efficiency of viral DNA replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83212-0
2007-12-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/12/3234.html?itemId=/content/journal/jgv/10.1099/vir.0.83212-0&mimeType=html&fmt=ahah

References

  1. Adimoolam, S. & Ford, J. M. ( 2002; ). p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc Natl Acad Sci U S A 99, 12985–12990.[CrossRef]
    [Google Scholar]
  2. Asai, R., Kato, A., Kato, K., Kanamori-Koyama, M., Sugimoto, K., Sairenji, T., Nishiyama, Y. & Kawaguchi, Y. ( 2006; ). Epstein–Barr virus protein kinase BGLF4 is a virion tegument protein that dissociates from virions in a phosphorylation-dependent process and phosphorylates the viral immediate-early protein BZLF1. J Virol 80, 5125–5134.[CrossRef]
    [Google Scholar]
  3. Calderwood, M. A., Venkatesan, K., Xing, L., Chase, M. R., Vazquez, A., Holthaus, A. M., Ewence, A. E., Li, N., Hirozane-Kishikawa, T. & other authors ( 2007; ). Epstein–Barr virus and virus human protein interaction maps. Proc Natl Acad Sci U S A 104, 7606–7611.[CrossRef]
    [Google Scholar]
  4. Chang, Y., Tung, C. H., Huang, Y. T., Lu, J., Chen, J. Y. & Tsai, C. H. ( 1999; ). Requirement for cell-to-cell contact in Epstein–Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J Virol 73, 8857–8866.
    [Google Scholar]
  5. Chang, Y., Cheng, S. D. & Tsai, C. H. ( 2002; ). Chromosomal integration of Epstein–Barr virus genomes in nasopharyngeal carcinoma cells. Head Neck 24, 143–150.[CrossRef]
    [Google Scholar]
  6. Chang, H. C., Tsai, J., Guo, Y. L., Huang, Y. H., Tsai, H. N., Tsai, P. C. & Huang, W. ( 2003; ). Differential UVC-induced gadd45 gene expression in xeroderma pigmentosum cells. Biochem Biophys Res Commun 305, 1109–1115.[CrossRef]
    [Google Scholar]
  7. Chang, Y., Chang, S. S., Lee, H. H., Doong, S. L., Takada, K. & Tsai, C. H. ( 2004; ). Inhibition of the Epstein–Barr virus lytic cycle by Zta-targeted RNA interference. J Gen Virol 85, 1371–1379.[CrossRef]
    [Google Scholar]
  8. Chen, C. & Okayama, H. ( 1987; ). High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7, 2745–2752.
    [Google Scholar]
  9. Chen, M. R., Chang, S. J., Huang, H. & Chen, J. Y. ( 2000; ). A protein kinase activity associated with Epstein–Barr virus BGLF4 phosphorylates the viral early antigen EA-D in vitro. J Virol 74, 3093–3104.[CrossRef]
    [Google Scholar]
  10. Daikoku, T., Kudoh, A., Sugaya, Y., Iwahori, S., Shirata, N., Isomura, H. & Tsurumi, T. ( 2006; ). Postreplicative mismatch repair factors are recruited to Epstein–Barr virus replication compartments. J Biol Chem 281, 11422–11430.[CrossRef]
    [Google Scholar]
  11. Fixman, E. D., Hayward, G. S. & Hayward, S. D. ( 1995; ). Replication of Epstein–Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. J Virol 69, 2998–3006.
    [Google Scholar]
  12. Friedberg, E. C. ( 2001; ). How nucleotide excision repair protects against cancer. Nat Rev Cancer 1, 22–33.[CrossRef]
    [Google Scholar]
  13. Gershburg, E., Raffa, S., Torrisi, M. R. & Pagano, J. S. ( 2007; ). Epstein–Barr virus-encoded protein kinase (BGLF4) is involved in production of infectious virus. J Virol 81, 5407–5412.[CrossRef]
    [Google Scholar]
  14. Groisman, I. J., Koshy, R., Henkler, F., Groopman, J. D. & Alaoui-Jamali, M. A. ( 1999; ). Downregulation of DNA excision repair by the hepatitis B virus-x protein occurs in p53-proficient and p53-deficient cells. Carcinogenesis 20, 479–483.[CrossRef]
    [Google Scholar]
  15. Hoeijmakers, J. H. ( 2001; ). Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374.[CrossRef]
    [Google Scholar]
  16. James, P., Halladay, J. & Craig, E. A. ( 1996; ). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436.
    [Google Scholar]
  17. Kao, S. Y. & Marriott, S. J. ( 1999; ). Disruption of nucleotide excision repair by the human T-cell leukemia virus type 1 Tax protein. J Virol 73, 4299–4304.
    [Google Scholar]
  18. Kato, K., Yokoyama, A., Tohya, Y., Akashi, H., Nishiyama, Y. & Kawaguchi, Y. ( 2003; ). Identification of protein kinases responsible for phosphorylation of Epstein–Barr virus nuclear antigen leader protein at serine-35, which regulates its coactivator function. J Gen Virol 84, 3381–3392.[CrossRef]
    [Google Scholar]
  19. Kawaguchi, Y., Kato, K., Tanaka, M., Kanamori, M., Nishiyama, Y. & Yamanashi, Y. ( 2003; ). Conserved protein kinases encoded by herpesviruses and cellular protein kinase cdc2 target the same phosphorylation site in eukaryotic elongation factor 1δ. J Virol 77, 2359–2368.[CrossRef]
    [Google Scholar]
  20. Krokan, H. E., Drablos, F. & Slupphaug, G. ( 2002; ). Uracil in DNA – occurrence, consequences and repair. Oncogene 21, 8935–8948.[CrossRef]
    [Google Scholar]
  21. Kudoh, A., Fujita, M., Zhang, L., Shirata, N., Daikoku, T., Sugaya, Y., Isomura, H., Nishiyama, Y. & Tsurumi, T. ( 2005; ). Epstein–Barr virus lytic replication elicits ATM checkpoint signal transduction while providing an S-phase-like cellular environment. J Biol Chem 280, 8156–8163.[CrossRef]
    [Google Scholar]
  22. Kudoh, A., Daikoku, T., Ishimi, Y., Kawaguchi, Y., Shirata, N., Iwahori, S., Isomura, H. & Tsurumi, T. ( 2006; ). Phosphorylation of MCM4 at sites inactivating DNA helicase activity of the MCM4–MCM6–MCM7 complex during Epstein–Barr virus productive replication. J Virol 80, 10064–10072.[CrossRef]
    [Google Scholar]
  23. Kunkel, T. A. & Erie, D. A. ( 2005; ). DNA mismatch repair. Annu Rev Biochem 74, 681–710.[CrossRef]
    [Google Scholar]
  24. Lee, C. P., Chen, J. Y., Wang, J. T., Kimura, K., Takemoto, A., Lu, C. C. & Chen, M. R. ( 2007; ). Epstein–Barr virus BGLF4 kinase induces premature chromosome condensation through activation of condensin and topoisomerase II. J Virol 81, 5166–5180.[CrossRef]
    [Google Scholar]
  25. Lin, C. T., Chan, W. Y., Chen, W., Huang, H. M., Wu, H. C., Hsu, M. M., Chuang, S. M. & Wang, C. C. ( 1993; ). Characterization of seven newly established nasopharyngeal carcinoma cell lines. Lab Invest 68, 716–727.
    [Google Scholar]
  26. Liu, M. T., Chen, Y. R., Chen, S. C., Hu, C. Y., Lin, C. S., Chang, Y. T., Wang, W. B. & Chen, J. Y. ( 2004; ). Epstein–Barr virus latent membrane protein 1 induces micronucleus formation, represses DNA repair and enhances sensitivity to DNA-damaging agents in human epithelial cells. Oncogene 23, 2531–2539.[CrossRef]
    [Google Scholar]
  27. Lo, Y. M., Chan, L. Y., Chan, A. T., Leung, S. F., Lo, K. W., Zhang, J., Lee, J. C., Hjelm, N. M., Johnson, P. J. & Huang, D. P. ( 1999; ). Quantitative and temporal correlation between circulating cell-free Epstein–Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma. Cancer Res 59, 5452–5455.
    [Google Scholar]
  28. Lu, C.-C. & Chen, M.-R. ( 2006; ). Lytic replication of Epstein–Barr virus. Future Virol 1, 435–446.[CrossRef]
    [Google Scholar]
  29. Lu, C. C., Huang, H. T., Wang, J. T., Slupphaug, G., Li, T. K., Wu, M. C., Chen, Y. C., Lee, C. P. & Chen, M. R. ( 2007; ). Characterization of the uracil-DNA glycosylase activity of Epstein–Barr virus BKRF3 and its role in lytic viral DNA replication. J Virol 81, 1195–1208.[CrossRef]
    [Google Scholar]
  30. Mathonnet, G., Lachance, S., Alaoui-Jamali, M. & Drobetsky, E. A. ( 2004; ). Expression of hepatitis B virus X oncoprotein inhibits transcription-coupled nucleotide excision repair in human cells. Mutat Res 554, 305–318.[CrossRef]
    [Google Scholar]
  31. Mitsudomi, T., Steinberg, S. M., Nau, M. M., Carbone, D., D'Amico, D., Bodner, S., Oie, H. K., Linnoila, R. I., Mulshine, J. L. & other authors ( 1992; ). p53 gene mutations in non-small-cell lung cancer cell lines and their correlation with the presence of ras mutations and clinical features. Oncogene 7, 171–180.
    [Google Scholar]
  32. Otterlei, M., Warbrick, E., Nagelhus, T. A., Haug, T., Slupphaug, G., Akbari, M., Aas, P. A., Steinsbekk, K., Bakke, O. & Krokan, H. E. ( 1999; ). Post-replicative base excision repair in replication foci. EMBO J 18, 3834–3844.[CrossRef]
    [Google Scholar]
  33. Philpott, S. M. & Buehring, G. C. ( 1999; ). Defective DNA repair in cells with human T-cell leukemia/bovine leukemia viruses: role of tax gene. J Natl Cancer Inst 91, 933–942.[CrossRef]
    [Google Scholar]
  34. Ragoczy, T. & Miller, G. ( 1999; ). Role of the Epstein–Barr virus RTA protein in activation of distinct classes of viral lytic cycle genes. J Virol 73, 9858–9866.
    [Google Scholar]
  35. Rickinson, A. B. & Kieff, E. ( 2001; ). Epstein–Barr virus and its replication. In Fields Virology, 4th edn, pp. 2575–2627. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  36. Rubbi, C. P. & Milner, J. ( 2003; ). p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. EMBO J 22, 975–986.[CrossRef]
    [Google Scholar]
  37. Shiloh, Y. ( 2003; ). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3, 155–168.[CrossRef]
    [Google Scholar]
  38. Shirata, N., Kudoh, A., Daikoku, T., Tatsumi, Y., Fujita, M., Kiyono, T., Sugaya, Y., Isomura, H., Ishizaki, K. & Tsurumi, T. ( 2005; ). Activation of ataxia telangiectasia-mutated DNA damage checkpoint signal transduction elicited by herpes simplex virus infection. J Biol Chem 280, 30336–30341.[CrossRef]
    [Google Scholar]
  39. Shivji, K. K., Kenny, M. K. & Wood, R. D. ( 1992; ). Proliferating cell nuclear antigen is required for DNA excision repair. Cell 69, 367–374.[CrossRef]
    [Google Scholar]
  40. Taylor, T. J. & Knipe, D. M. ( 2004; ). Proteomics of herpes simplex virus replication compartments: association of cellular DNA replication, repair, recombination, and chromatin remodeling proteins with ICP8. J Virol 78, 5856–5866.[CrossRef]
    [Google Scholar]
  41. Tsai, C. H., Williams, M. V. & Glaser, R. ( 1991; ). Characterization of two monoclonal antibodies to Epstein–Barr virus diffuse early antigen which react to two different epitopes and have different biological function. J Virol Methods 33, 47–52.
    [Google Scholar]
  42. Tsai, C. H., Liu, M. T., Chen, M. R., Lu, J., Yang, H. L., Chen, J. Y. & Yang, C. S. ( 1997; ). Characterization of monoclonal antibodies to the Zta and DNase proteins of Epstein–Barr virus. J Biomed Sci 4, 69–77.[CrossRef]
    [Google Scholar]
  43. Uchida, A., Sugasawa, K., Masutani, C., Dohmae, N., Araki, M., Yokoi, M., Ohkuma, Y. & Hanaoka, F. ( 2002; ). The carboxy-terminal domain of the XPC protein plays a crucial role in nucleotide excision repair through interactions with transcription factor IIH. DNA Repair (Amst) 1, 449–461.[CrossRef]
    [Google Scholar]
  44. Verma, S. C., Bajaj, B. G., Cai, Q., Si, H., Seelhammer, T. & Robertson, E. S. ( 2006; ). Latency associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus recruits uracil DNA glycosylase 2 at the terminal repeats and is important for latent persistence of the virus. J Virol 80, 11178–11190.[CrossRef]
    [Google Scholar]
  45. Wang, X. W., Yeh, H., Schaeffer, L., Roy, R., Moncollin, V., Egly, J. M., Wang, Z., Freidberg, E. C., Evans, M. K. & other authors ( 1995; ). p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat Genet 10, 188–195.[CrossRef]
    [Google Scholar]
  46. Wang, J. T., Yang, P. W., Lee, C. P., Han, C. H., Tsai, C. H. & Chen, M. R. ( 2005; ). Detection of Epstein–Barr virus BGLF4 protein kinase in virus replication compartments and virus particles. J Gen Virol 86, 3215–3225.[CrossRef]
    [Google Scholar]
  47. Weitzman, M. D., Carson, C. T., Schwartz, R. A. & Lilley, C. E. ( 2004; ). Interactions of viruses with the cellular DNA repair machinery. DNA Repair (Amst) 3, 1165–1173.[CrossRef]
    [Google Scholar]
  48. Yue, W., Gershburg, E. & Pagano, J. S. ( 2005; ). Hyperphosphorylation of EBNA2 by Epstein–Barr virus protein kinase suppresses transactivation of the LMP1 promoter. J Virol 79, 5880–5885.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83212-0
Loading
/content/journal/jgv/10.1099/vir.0.83212-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error