1887

Abstract

CXCR4 functions as an infection receptor of X4 human immunodeficiency virus type 1 (HIV-1) . CXCR4 is glycosylated at the N-terminal extracellular region, which is important for viral envelope (Env) protein binding. We compared the effects of CXCR4 glycan on the CD4-dependent and –independent infections in human cells by X4 viruses. We found that transduction mediated by Env proteins of CD4-independent HIV-1 strains increased up to 5.5-fold in cells expressing unglycosylated CXCR4, suggesting that the CXCR4 glycan inhibits CD4-independent X4 virus infection. Co-expression of CD4 on the target cell surface or pre-incubation of virus particles with soluble CD4 abrogates the glycan-mediated inhibition of X4 virus infection, suggesting that interaction of Env protein with CD4 counteracts the inhibition. These findings indicate that it will be advantageous for X4 HIV-1 to remain CD4-dependent. A structural model that explains the glycan-mediated inhibition is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83202-0
2007-11-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/11/3139.html?itemId=/content/journal/jgv/10.1099/vir.0.83202-0&mimeType=html&fmt=ahah

References

  1. Berger, E. A., Doms, R. W., Fenyo, E. M., Korber, B. T., Littman, D. R., Moore, J. P., Sattentau, Q. J., Schuitemaker, H., Sodroski, J. & Weiss, R. A. ( 1998; ). A new classification for HIV-1. Nature 391, 240 [CrossRef]
    [Google Scholar]
  2. Bhattacharya, J., Peters, P. J. & Clapham, P. R. ( 2003; ). CD4-independent infection of HIV and SIV: implications for envelope conformation and cell tropism in vivo. AIDS 17 (Suppl. 4), S35–S43.[CrossRef]
    [Google Scholar]
  3. Brelot, A., Heveker, N., Pleskoff, O., Sol, N. & Alizon, M. ( 1997; ). Role of the first and third extracellular domains of CXCR-4 in human immunodeficiency virus coreceptor activity. J Virol 71, 4744–4751.
    [Google Scholar]
  4. Brelot, A., Heveker, N., Montes, M. & Alizon, M. ( 2000; ). Identification of residues of CXCR4 critical for human immunodeficiency virus coreceptor and chemokine receptor activities. J Biol Chem 275, 23736–23744.[CrossRef]
    [Google Scholar]
  5. Chabot, D. J. & Broder, C. C. ( 2000; ). Substitutions in a homologous region of extracellular loop 2 of CXCR4 and CCR5 alter coreceptor activities for HIV-1 membrane fusion and virus entry. J Biol Chem 275, 23774–23782.[CrossRef]
    [Google Scholar]
  6. Chabot, D. J., Zhang, P. F., Quinnan, G. V. & Broder, C. C. ( 1999; ). Mutagenesis of CXCR4 identifies important domains for human immunodeficiency virus type 1 X4 isolate envelope-mediated membrane fusion and virus entry and reveals cryptic coreceptor activity for R5 isolates. J Virol 73, 6598–6609.
    [Google Scholar]
  7. Chabot, D. J., Chen, H., Dimitrov, D. S. & Broder, C. C. ( 2000; ). N-linked glycosylation of CXCR4 masks coreceptor function for CCR5-dependent human immunodeficiency virus type 1 isolates. J Virol 74, 4404–4413.[CrossRef]
    [Google Scholar]
  8. Chang, L. J., Urlacher, V., Iwakuma, T., Cui, Y. & Zucali, J. ( 1999; ). Efficacy and safety analyses of a recombinant human immunodeficiency virus type 1 derived vector system. Gene Ther 6, 715–728.[CrossRef]
    [Google Scholar]
  9. Dimitrov, D. S. ( 1997; ). How do viruses enter cells? The HIV coreceptors teach us a lesson of complexity. Cell 91, 721–730.[CrossRef]
    [Google Scholar]
  10. Doranz, B. J., Orsini, M. J., Turner, J. D., Hoffman, T. L., Berson, J. F., Hoxie, J. A., Peiper, S. C., Brass, L. F. & Doms, R. W. ( 1999; ). Identification of CXCR4 domains that support coreceptor and chemokine receptor functions. J Virol 73, 2752–2761.
    [Google Scholar]
  11. Dumonceaux, J., Nisole, S., Chanel, C., Quivet, L., Amara, A., Baleux, F., Briand, P. & Hazan, U. ( 1998; ). Spontaneous mutations in the env gene of the human immunodeficiency virus type 1 NDK isolate are associated with a CD4-independent entry phenotype. J Virol 72, 512–519.
    [Google Scholar]
  12. Edinger, A. L., Blanpain, C., Kunstman, K. J., Wolinsky, S. M., Parmentier, M. & Doms, R. W. ( 1999; ). Functional dissection of CCR5 coreceptor function through the use of CD4-independent simian immunodeficiency virus strains. J Virol 73, 4062–4073.
    [Google Scholar]
  13. Edwards, T. G., Hoffman, T. L., Baribaud, F., Wyss, S., LaBranche, C. C., Romano, J., Adkinson, J., Sharron, M., Hoxie, J. A. & Doms, R. W. ( 2001; ). Relationships between CD4 independence, neutralization sensitivity, and exposure of a CD4-induced epitope in a human immunodeficiency virus type 1 envelope protein. J Virol 75, 5230–5239.[CrossRef]
    [Google Scholar]
  14. Hart, T. K., Kirsh, R., Ellens, H., Sweet, R. W., Lambert, D. M., Petteway, S. R., Jr, Leary, J. & Bugelski, P. J. ( 1991; ). Binding of soluble CD4 proteins to human immunodeficiency virus type 1 and infected cells induces release of envelope glycoprotein gp120. Proc Natl Acad Sci U S A 88, 2189–2193.[CrossRef]
    [Google Scholar]
  15. Hoffman, T. L., LaBranche, C. C., Zhang, W., Canziani, G., Robinson, J., Chaiken, I., Hoxie, J. A. & Doms, R. W. ( 1999; ). Stable exposure of the coreceptor-binding site in a CD4-independent HIV-1 envelope protein. Proc Natl Acad Sci U S A 96, 6359–6364.[CrossRef]
    [Google Scholar]
  16. Hoffman, T. L., Canziani, G., Jia, L., Rucker, J. & Doms, R. W. ( 2000; ). A biosensor assay for studying ligand-membrane receptor interactions: binding of antibodies and HIV-1 Env to chemokine receptors. Proc Natl Acad Sci U S A 97, 11215–11220.[CrossRef]
    [Google Scholar]
  17. Huang, X., Shen, J., Cui, M., Shen, L., Luo, X., Ling, K., Pei, G., Jiang, H. & Chen, K. ( 2003; ). Molecular dynamics simulations on SDF-1alpha: binding with CXCR4 receptor. Biophys J 84, 171–184.[CrossRef]
    [Google Scholar]
  18. Huang, C. C., Tang, M., Zhang, M. Y., Majeed, S., Montabana, E., Stanfield, R. L., Dimitrov, D. S., Korber, B., Sodroski, J. & other authors ( 2005; ). Structure of a V3-containing HIV-1 gp120 core. Science 310, 1025–1028.[CrossRef]
    [Google Scholar]
  19. Iwakuma, T., Cui, Y. & Chang, L. J. ( 1999; ). Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 261, 120–132.[CrossRef]
    [Google Scholar]
  20. Kajumo, F., Thompson, D. A., Guo, Y. & Dragic, T. ( 2000; ). Entry of R5X4 and X4 human immunodeficiency virus type 1 strains is mediated by negatively charged and tyrosine residues in the amino-terminal domain and the second extracellular loop of CXCR4. Virology 271, 240–247.[CrossRef]
    [Google Scholar]
  21. Kinomoto, M., Yokoyama, M., Sato, H., Kojima, A., Kurata, T., Ikuta, K., Sata, T. & Tokunaga, K. ( 2005; ). Amino acid 36 in the human immunodeficiency virus type 1 gp41 ectodomain controls fusogenic activity: implications for the molecular mechanism of viral escape from a fusion inhibitor. J Virol 79, 5996–6004.[CrossRef]
    [Google Scholar]
  22. Kolchinsky, P., Kiprilov, E. & Sodroski, J. ( 2001; ). Increased neutralization sensitivity of CD4-independent human immunodeficiency virus variants. J Virol 75, 2041–2050.[CrossRef]
    [Google Scholar]
  23. Kubo, Y., Ono, T., Ogura, M., Ishimoto, A. & Amanuma, H. ( 2002; ). A glycosylation-defective variant of the ecotropic murine retrovirus receptor is expressed in rat XC cells. Virology 303, 338–344.[CrossRef]
    [Google Scholar]
  24. Kubo, Y., Ishimoto, A. & Amanuma, H. ( 2003; ). N-Linked glycosylation is required for XC cell-specific syncytium formation by the R peptide-containing envelope protein of ecotropic murine leukemia viruses. J Virol 77, 7510–7516.[CrossRef]
    [Google Scholar]
  25. Kubo, Y., Ishimoto, A., Ono, T., Yoshii, H., Tominaga, C., Mitani, C., Amanuma, H. & Yamamoto, N. ( 2004; ). Determinant for the inhibition of ecotropic murine leukemia virus infection by N-linked glycosylation of the rat receptor. Virology 330, 82–91.[CrossRef]
    [Google Scholar]
  26. Marin, M., Lavillette, D., Kelly, S. M. & Kabat, D. ( 2003; ). N-linked glycosylation and sequence changes in a critical negative control region of the ASCT1 and ASCT2 neutral amino acid transporters determine their retroviral receptor functions. J Virol 77, 2936–2945.[CrossRef]
    [Google Scholar]
  27. Martin, K. A., Wyatt, R., Farzan, M., Choe, H., Marcon, L., Desjardins, E., Robinson, J., Sodroski, J., Gerard, C. & Gerard, N. P. ( 1997; ). CD4-independent binding of SIV gp120 to rhesus CCR5. Science 278, 1470–1473.[CrossRef]
    [Google Scholar]
  28. Moore, J. P., McKeating, J. A., Weiss, R. A. & Sattentau, Q. J. ( 1990; ). Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science 250, 1139–1142.[CrossRef]
    [Google Scholar]
  29. Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., Verma, I. M. & Trono, D. ( 1996; ). In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.[CrossRef]
    [Google Scholar]
  30. Overbaugh, J., Miller, A. D. & Eiden, M. V. ( 2001; ). Receptors and entry cofactors for retroviruses include single and multiple transmembrane-spanning proteins as well as newly described glycophosphatidylinositol-anchored and secreted proteins. Microbiol Mol Biol Rev 65, 371–389 (table of contents).[CrossRef]
    [Google Scholar]
  31. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T. & other authors ( 2000; ). Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739–745.[CrossRef]
    [Google Scholar]
  32. Picard, L., Wilkinson, D. A., McKnight, A., Gray, P. W., Hoxie, J. A., Clapham, P. R. & Weiss, R. A. ( 1997; ). Role of the amino-terminal extracellular domain of CXCR-4 in human immunodeficiency virus type 1 entry. Virology 231, 105–111.[CrossRef]
    [Google Scholar]
  33. Ponder, J. W. & Case, D. A. ( 2003; ). Force fields for protein simulations. Adv Protein Chem 66, 27–85.
    [Google Scholar]
  34. Potempa, S., Picard, L., Reeves, J. D., Wilkinson, D., Weiss, R. A. & Talbot, S. J. ( 1997; ). CD4-independent infection by human immunodeficiency virus type 2 strain ROD/B: the role of the N-terminal domain of CXCR-4 in fusion and entry. J Virol 71, 4419–4424.
    [Google Scholar]
  35. Puffer, B. A., Pohlmann, S., Edinger, A. L., Carlin, D., Sanchez, M. D., Reitter, J., Watry, D. D., Fox, H. S., Desrosiers, R. C. & Doms, R. W. ( 2002; ). CD4 independence of simian immunodeficiency virus Envs is associated with macrophage tropism, neutralization sensitivity, and attenuated pathogenicity. J Virol 76, 2595–2605.[CrossRef]
    [Google Scholar]
  36. Schenten, D., Marcon, L., Karlsson, G. B., Parolin, C., Kodama, T., Gerard, N. & Sodroski, J. ( 1999; ). Effects of soluble CD4 on simian immunodeficiency virus infection on CD4-positive and CD4-negative cells. J Virol 73, 5373–5380.
    [Google Scholar]
  37. Soda, Y., Shimizu, N., Jinno, A., Liu, H. Y., Kanbe, K., Kitamura, T. & Hoshino, H. ( 1999; ). Establishment of a new system for determination of coreceptor usages of HIV based on the human glioma NP-2 cell line. Biochem Biophys Res Commun 258, 313–321.[CrossRef]
    [Google Scholar]
  38. Sommerfelt, M. A. ( 1999; ). Retrovirus receptors. J Gen Virol 80, 3049–3064.
    [Google Scholar]
  39. Tailor, C. S., Nouri, A. & Kabat, D. ( 2000; ). Cellular and species resistance to murine amphotropic, gibbon ape, and feline subgroup C leukemia viruses is strongly influenced by receptor expression levels and by receptor masking mechanisms. J Virol 74, 9797–9801.[CrossRef]
    [Google Scholar]
  40. Tanaka, R., Yoshida, A., Murakami, T., Baba, E., Lichtenfeld, J., Omori, T., Kimura, T., Tsurutani, N., Fujii, N. & other authors ( 2001; ). Unique monoclonal antibody recognizing the third extracellular loop of CXCR4 induces lymphocyte agglutination and enhances human immunodeficiency virus type 1-mediated syncytium formation and productive infection. J Virol 75, 11534–11543.[CrossRef]
    [Google Scholar]
  41. Thomas, E. R., Shotton, C., Weiss, R. A., Clapham, P. R. & McKnight, A. ( 2003; ). CD4-dependent and CD4-independent HIV-2: consequences for neutralization. AIDS 17, 291–300.[CrossRef]
    [Google Scholar]
  42. Thordsen, I., Polzer, S. & Schreiber, M. ( 2002; ). Infection of cells expressing CXCR4 mutants lacking N-glycosylation at the N-terminal extracellular domain is enhanced for R5X4-dualtropic human immunodeficiency virus type-1. BMC Infect Dis 2, 31 [CrossRef]
    [Google Scholar]
  43. Wang, J., Babcock, G. J., Choe, H., Farzan, M., Sodroski, J. & Gabuzda, D. ( 2004; ). N-linked glycosylation in the CXCR4 N-terminus inhibits binding to HIV-1 envelope glycoproteins. Virology 324, 140–150.[CrossRef]
    [Google Scholar]
  44. Wilson, C. A. & Eiden, M. V. ( 1991; ). Viral and cellular factors governing hamster cell infection by murine and gibbon ape leukemia viruses. J Virol 65, 5975–5982.
    [Google Scholar]
  45. Zhou, N., Luo, Z., Luo, J., Liu, D., Hall, J. W., Pomerantz, R. J. & Huang, Z. ( 2001; ). Structural and functional characterization of human CXCR4 as a chemokine receptor and HIV-1 co-receptor by mutagenesis and molecular modeling studies. J Biol Chem 276, 42826–42833.[CrossRef]
    [Google Scholar]
  46. Zhu, P., Liu, J., Bess, J., Jr, Chertova, E., Lifson, J. D., Grise, H., Ofek, G. A., Taylor, K. A. & Roux, K. H. ( 2006; ). Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 441, 847–852.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83202-0
Loading
/content/journal/jgv/10.1099/vir.0.83202-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error