1887

Abstract

Maize streak virus (MSV) contributes significantly to the problem of extremely low African maize yields. Whilst a diverse range of MSV and MSV-like viruses are endemic in sub-Saharan Africa and neighbouring islands, only a single group of maize-adapted variants – MSV subtypes A–A – causes severe enough disease in maize to influence yields substantially. In order to assist in designing effective strategies to control MSV in maize, a large survey covering 155 locations was conducted to assess the diversity, distribution and genetic characteristics of the Ugandan MSV-A population. PCR–restriction fragment-length polymorphism analyses of 391 virus isolates identified 49 genetic variants. Sixty-two full-genome sequences were determined, 52 of which were detectably recombinant. All but two recombinants contained predominantly MSV-A-like sequences. Of the ten distinct recombination events observed, seven involved inter-MSV-A subtype recombination and three involved intra-MSV-A recombination. One of the intra-MSV-A recombinants, designated MSV-AUgIII, accounted for >60 % of all MSV infections sampled throughout Uganda. Although recombination may be an important factor in the emergence of novel geminivirus variants, it is demonstrated that its characteristics in MSV are quite different from those observed in related African cassava-infecting geminivirus species.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83144-0
2007-11-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/11/3154.html?itemId=/content/journal/jgv/10.1099/vir.0.83144-0&mimeType=html&fmt=ahah

References

  1. Awadalla, P. ( 2003; ). The evolutionary genomics of pathogen recombination. Nat Rev Genet 4, 50–60.[CrossRef]
    [Google Scholar]
  2. Briddon, R. W., Lunness, P., Chamberlin, L. C. & Markham, P. G. ( 1994; ). Analysis of the genetic variability of maize streak virus. Virus Genes 9, 93–100.[CrossRef]
    [Google Scholar]
  3. Bull, S. E., Briddon, R. W., Sserubombwe, W. S., Ngugi, K., Markham, P. G. & Stanley, J. ( 2006; ). Genetic diversity and phylogeography of cassava mosaic viruses in Kenya. J Gen Virol 87, 3053–3065.[CrossRef]
    [Google Scholar]
  4. Fauquet, C. M., Bisaro, D. M., Briddon, R. W., Brown, J. K., Harrison, B. D., Rybicki, E. P., Stenger, D. C. & Stanley, J. ( 2003; ). Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an updated list of begomovirus species. Arch Virol 148, 405–421.[CrossRef]
    [Google Scholar]
  5. Fu, Y. X. & Li, W. H. ( 1993; ). Statistical tests of neutrality of mutations. Genetics 133, 693–709.
    [Google Scholar]
  6. Gibbs, M. J., Armstrong, J. S. & Gibbs, A. J. ( 2000; ). Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16, 573–582.[CrossRef]
    [Google Scholar]
  7. Grasso, C. & Lee, C. ( 2004; ). Combining partial order alignment and progressive multiple sequence alignment increases alignment speed and scalability to very large alignment problems. Bioinformatics 20, 1546–1556.[CrossRef]
    [Google Scholar]
  8. Guindon, S. & Gascuel, O. ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  9. Holmes, E. C., Worobey, M. & Rambaut, A. ( 1999; ). Phylogenetic evidence for recombination in dengue virus. Mol Biol Evol 16, 405–409.[CrossRef]
    [Google Scholar]
  10. Kiprop, E. K., Baudoin, J. P., Mwang'ombe, A. W., Kimani, P. M., Mergeai, G. & Maquet, A. ( 2002; ). Characterization of Kenyan isolates of Fusarium udum from pigeonpea [Cajanus cajan (L.) Millsp.] by cultural characteristics, aggressiveness and AFLP analysis. J Phytopathol 150, 517–525.[CrossRef]
    [Google Scholar]
  11. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  12. Martin, D. & Rybicki, E. ( 2000; ). rdp: detection of recombination amongst aligned sequences. Bioinformatics 16, 562–563.[CrossRef]
    [Google Scholar]
  13. Martin, D. P. & Rybicki, E. P. ( 2002; ). Investigation of maize streak virus pathogenicity determinants using chimaeric genomes. Virology 300, 180–188.[CrossRef]
    [Google Scholar]
  14. Martin, D. P., Willment, J. A., Billharz, R., Velders, R., Odhiambo, B., Njuguna, J., James, D. & Rybicki, E. P. ( 2001; ). Sequence diversity and virulence in Zea mays of maize streak virus isolates. Virology 288, 247–255.[CrossRef]
    [Google Scholar]
  15. Martin, D. P., Posada, D., Crandall, K. A. & Williamson, C. ( 2005a; ). A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 21, 98–102.[CrossRef]
    [Google Scholar]
  16. Martin, D. P., van der Walt, E., Posada, D. & Rybicki, E. P. ( 2005b; ). The evolutionary value of recombination is constrained by genome modularity. PLoS Genet 1, e51 [CrossRef]
    [Google Scholar]
  17. Martin, D. P., Williamson, C. & Posada, D. ( 2005c; ). rdp2: recombination detection and analysis from sequence alignments. Bioinformatics 21, 260–262.[CrossRef]
    [Google Scholar]
  18. Maynard Smith, J. ( 1992; ). Analyzing the mosaic structure of genes. J Mol Evol 34, 126–129.
    [Google Scholar]
  19. McVean, G., Awadalla, P. & Fearnhead, P. ( 2002; ). A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160, 1231–1241.
    [Google Scholar]
  20. McVean, G. A. T., Myers, S. R., Hunt, S., Deloukas, P., Bentley, D. R. & Donnelly, P. ( 2004; ). The fine-scale structure of recombination rate variation in the human genome. Science 304, 581–584.[CrossRef]
    [Google Scholar]
  21. Ndunguru, J., Legg, J. P., Aveling, T. A., Thompson, G. & Fauquet, C. M. ( 2005a; ). Molecular biodiversity of cassava begomoviruses in Tanzania: evolution of cassava geminiviruses in Africa and evidence for East Africa being a center of diversity of cassava geminiviruses. Virol J 2, 21 [CrossRef]
    [Google Scholar]
  22. Ndunguru, J., Taylor, N. J., Yadav, J., Aly, H., Legg, J. P., Aveling, T., Thompson, G. & Fauquet, C. M. ( 2005b; ). Application of FTA technology for sampling, recovery and molecular characterization of viral pathogens and virus-derived transgenes from plant tissues. Virol J 2, 45 [CrossRef]
    [Google Scholar]
  23. Owor, B. E., Shepherd, D. N., Taylor, N. J., Edema, R., Monjane, A. L., Thomson, J. A., Martin, D. P. & Varsani, A. ( 2007; ). Successful application of FTA Classic Card technology and use of bacteriophage phi29 DNA polymerase for large-scale field sampling and cloning of complete maize streak virus genomes. J Virol Methods 140, 100–105.[CrossRef]
    [Google Scholar]
  24. Padidam, M., Sawyer, S. & Fauquet, C. M. ( 1999; ). Possible emergence of new geminiviruses by frequent recombination. Virology 265, 218–225.[CrossRef]
    [Google Scholar]
  25. Posada, D. & Crandall, K. A. ( 2001; ). Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci U S A 98, 13757–13762.[CrossRef]
    [Google Scholar]
  26. Posada, D. & Crandall, K. A. ( 2002; ). The effect of recombination on the accuracy of phylogeny estimation. J Mol Evol 54, 396–402.[CrossRef]
    [Google Scholar]
  27. Rozas, J. & Rozas, R. ( 1999; ). DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15, 174–175.[CrossRef]
    [Google Scholar]
  28. Schierup, M. H. & Hein, J. ( 2000; ). Consequences of recombination on traditional phylogenetic analysis. Genetics 156, 879–891.
    [Google Scholar]
  29. Schnippenkoetter, W. H., Martin, D. P., Willment, J. A. & Rybicki, E. P. ( 2001; ). Forced recombination between distinct strains of maize streak virus. J Gen Virol 82, 3081–3090.
    [Google Scholar]
  30. Tajima, F. ( 1989; ). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.
    [Google Scholar]
  31. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  32. Vanitharani, R., Chellappan, P., Pita, J. S. & Fauquet, C. M. ( 2004; ). Differential roles of AC2 and AC4 of Cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J Virol 78, 9487–9498.[CrossRef]
    [Google Scholar]
  33. Willment, J. A., Martin, D. P. & Rybicki, E. P. ( 2001; ). Analysis of the diversity of African streak mastreviruses using PCR-generated RFLPs and partial sequence data. J Virol Methods 93, 75–87.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83144-0
Loading
/content/journal/jgv/10.1099/vir.0.83144-0
Loading

Data & Media loading...

Supplements

[ Single PDF file] (204 KB)

PDF

[ Excel file] (192 KB)

EXCEL

[ Cassava.rdp] (675 KB)

[ Cassava.csv] (31 KB)

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error