1887

Abstract

Genetic analysis of all eight genes of two Nanchang avian influenza viruses, A/Duck/Nanchang/1681/92 (H3N8-1681) and A/Duck/Nanchang/1904/92 (H7N1-1904), isolated from Jiangxi province, China, in 1992, showed that six internal genes of H3N8-1681 virus and five internal (except NS gene) genes of H7N1-1904 virus were closely similar to A/Goose/Guangdong/1/96 (H5N1) virus, the first highly pathogenic avian influenza (HPAI) virus of subtype H5N1 isolated in Asia. The neuraminidase (NA) gene of Gs/Gd/1/96 had the highest genetic similarity with A/Duck/Hokkaido/55/96 (H1N1-55) virus. The haemagglutinin (HA) gene of Gs/Gd/1/96 virus might have originated as a result of mutation of H5 HA gene from A/Swan/Hokkaido/51/96 (H5N3-51)-like viruses. The PA gene of H5N3-51 virus had the highest similarity with Gs/Gd/1/96. This study explains the origin of first Asian HPAI H5N1 virus in Guangdong by the reassortment of Nanchang (close to Guangdong) and Hokkaido (Japan) (H1N1-55 and H5N3-51) viruses. Genetic characteristics of donor and recipient viruses were also studied.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83129-0
2007-11-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/11/3094.html?itemId=/content/journal/jgv/10.1099/vir.0.83129-0&mimeType=html&fmt=ahah

References

  1. Alexander, D. J. ( 2000; ). A review of avian influenza in different bird species. Vet Microbiol 74, 3–13.[CrossRef]
    [Google Scholar]
  2. Bender, C., Hall, H., Huang, J., Klimov, A., Cox, N. J., Gregory, V., Cameron, K., Lim, W. & Subbarao, K. ( 1999; ). Characterization of the surface protein of influenza A (H5N1) viruses isolated from humans in 1997–1998. Virology 254, 115–123.[CrossRef]
    [Google Scholar]
  3. Chang, S., Zhang, J., Liao, X., Zhu, X., Wang, D., Zhu, J., Feng, T., Zhu, B., Gao, G. F. & other authors ( 2007; ). Influenza Virus Database (IVDB): an integrated information resource and analysis platform for influenza virus research. Nucleic Acids Res 35 (Database issue), D376–D380.[CrossRef]
    [Google Scholar]
  4. Gabriel, G., Dauber, B., Wolff, T., Planz, O., Klenk, H. D. & Stech, J. ( 2005; ). The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci U S A 102, 18590–18595.[CrossRef]
    [Google Scholar]
  5. Gao, P., Watanabe, S., Ito, T., Goto, H., Wells, K., McGregor, M., Cooley, A. J. & Kawaoka, Y. ( 1999; ). Biological heterogeneity, including systemic replication in mice, of H5N1 influenza A virus isolates from humans in Hong Kong. J Virol 73, 3184–3189.
    [Google Scholar]
  6. Guan, Y., Shortridge, K. F., Krauss, S. & Webster, R. G. ( 1999; ). Molecular characterization of H9N2 influenza viruses: were they the donors of the “internal” genes of H5N1 viruses in Hong Kong?. Proc Natl Acad Sci U S A 96, 9363–9367.[CrossRef]
    [Google Scholar]
  7. Guindon, S. & Gascuel, O. ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  8. Hatta, M., Gao, P., Halfmann, P. & Kawaoka, Y. ( 2001; ). Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293, 1840–1842.[CrossRef]
    [Google Scholar]
  9. Hiromoto, Y., Yamazaki, Y., Fukushima, T., Saito, T., Lindstrom, S., Omoe, K., Nerome, R., Lim, W., Sugita, S. & Nerome, K. ( 2000; ). Evolutionary characterization of the six internal genes of H5N1 human influenza A virus. J Gen Virol 81, 1293–1303.
    [Google Scholar]
  10. Hoffmann, E., Stech, J., Leneva, I., Krauss, S., Scholtissek, C., Chin, P. S., Peiris, M., Shortridge, K. F. & Webster, R. G. ( 2000; ). Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1?. J Virol 74, 6309–6315.[CrossRef]
    [Google Scholar]
  11. Katz, J. M., Lu, X., Tumpey, T. M., Smith, C. B., Shaw, M. W. & Subbarao, K. ( 2000; ). Molecular correlates of influenza A H5N1 virus pathogenesis in mice. J Virol 74, 10807–10810.[CrossRef]
    [Google Scholar]
  12. Kawaoka, Y., Naeve, C. W. & Webster, R. G. ( 1984; ). Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin?. Virology 139, 303–316.[CrossRef]
    [Google Scholar]
  13. Krug, R. M. ( 2006; ). Clues to the virulence of H5N1 viruses in humans. Science 311, 1562–1563.[CrossRef]
    [Google Scholar]
  14. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  15. Ludwig, S., Schultz, U., Mandler, J., Fitch, W. M. & Scholtissek, C. ( 1991; ). Phylogenetic relationship of the nonstructural (NS) genes of influenza A viruses. Virology 183, 566–577.[CrossRef]
    [Google Scholar]
  16. Macken, C., Lu, H., Goodman, J. & Boykin, L. ( 2001; ). The value of a database in surveillance and vaccine selection. In Options for the Control of Influenza IV: proceedings of the World Congress on Options for the Control of Influenza IV, Crete, 23–28 September 2000, pp. 103–106. Edited by A. D. M. E. Osterhaus, N. Cox & A. W. Hampson. Amsterdam: Elsevier Science.
  17. NCBI ( 2007; ). Influenza Virus Resource. Available from http://www.ncbi.nlm.nih.gov/genomes/FLU/
  18. Obenauer, J. C., Denson, J., Mehta, P. K., Su, X., Mukatira, S., Finkelstein, D. B., Xu, X., Wang, J., Ma, J. & other authors ( 2006; ). Large-scale sequence analysis of avian influenza isolates. Science 311, 1576–1580.[CrossRef]
    [Google Scholar]
  19. Scholtissek, C., Burger, H., Kistner, O. & Shortridge, K. F. ( 1985; ). The nucleoprotein as a possible major factor in determining host specificity of influenza H3N2 viruses. Virology 147, 287–294.[CrossRef]
    [Google Scholar]
  20. Senne, D. A., Panigrahy, B., Kawaoka, Y., Pearson, J. E., Suss, J., Lipkind, M., Kida, H. & Webster, R. G. ( 1996; ). Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses: amino acid sequence at the HA cleavage site as a marker of pathogenicity potential. Avian Dis 40, 425–437.[CrossRef]
    [Google Scholar]
  21. Seo, S. H., Hoffmann, E. & Webster, R. G. ( 2002; ). Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med 8, 950–954.[CrossRef]
    [Google Scholar]
  22. Sims, L. D., Domenech, J., Benigno, C., Kahn, S., Kamata, A., Lubroth, J., Martin, V. & Roeder, P. ( 2005; ). Origin and evolution of highly pathogenic H5N1 avian influenza in Asia. Vet Rec 157, 159–164.[CrossRef]
    [Google Scholar]
  23. Subbarao, K. & Shaw, M. W. ( 2000; ). Molecular aspects of avian influenza (H5N1) viruses isolated from humans. Rev Med Virol 10, 337–348.[CrossRef]
    [Google Scholar]
  24. Subbarao, E. K., London, W. & Murphy, B. R. ( 1993; ). A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol 67, 1761–1764.
    [Google Scholar]
  25. Subbarao, K., Klimov, A., Katz, J., Regnery, H., Lim, W., Hall, H., Perdue, M., Swayne, D., Bender, C. & other authors ( 1998; ). Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279, 393–396.[CrossRef]
    [Google Scholar]
  26. Wood, G. W., Banks, J., McCauley, J. W. & Alexander, D. J. ( 1994; ). Deduced amino acid sequences of the hemagglutinin of H5N1 avian influenza virus isolates from an outbreak in turkeys in Norfolk, England. Arch Virol 134, 185–194.[CrossRef]
    [Google Scholar]
  27. Xu, X., Subbarao, K., Cox, N. J. & Guo, Y. ( 1999; ). Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 261, 15–19.[CrossRef]
    [Google Scholar]
  28. Zhou, N. N., Shortridge, K. F., Claas, E. C. J., Krauss, S. L. & Webster, R. G. ( 1999; ). Rapid evolution of H5N1 influenza viruses in chickens in Hong Kong. J Virol 73, 3366–3374.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83129-0
Loading
/content/journal/jgv/10.1099/vir.0.83129-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 3094–3099

Supplementary data showing phylogenetic trees, likely genesis of Gs/Guangdong/1/96 (H5N1) virus and comparison of haemagglutinin (HA) cleavage sites. [PDF](315 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error