1887

Abstract

The matrix (M) protein of vesicular stomatitis virus (VSV) is a multi-functional protein involved in virus assembly, budding and pathogenesis. The PPPY late (L) domain of the M protein plays a key role in virus budding, whereas amino acids downstream of the PPPY motif contribute to host protein shut-off and pathogenesis. Using a panel of PSAP recombinant viruses, it has been demonstrated previously that the PSAP region of M does not possess L-domain activity similar to that of PPPY in BHK-21 cells. This study reports the unanticipated finding that these PSAP recombinants were attenuated in cell culture and in mice compared with control viruses. Indeed, PSAP recombinant viruses exhibited a small-plaque phenotype, reduced CPE, reduced levels of activated caspase-3, enhanced production of IFN- and reduced titres in the lungs and brains of infected mice. In particular, recombinant virus M6PY>A4-R34E was the most severely attenuated, exhibiting little or no CPE in cell culture and undetectable titres in the lungs and brains of infected mice. These findings indicate an important role for the PSAP region (aa 33–44) of the M protein in the pathology of VSV infection and may have implications for the development of VSV as a vaccine and/or oncolytic vector.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83096-0
2007-09-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/9/2559.html?itemId=/content/journal/jgv/10.1099/vir.0.83096-0&mimeType=html&fmt=ahah

References

  1. Ahmed M., McKenzie M. O., Puckett S., Hojnacki M., Poliquin L., Lyles D. S. 2003; Ability of the matrix protein of vesicular stomatitis virus to suppress beta interferon gene expression is genetically correlated with the inhibition of host RNA and protein synthesis. J Virol 77:4646–4657 [CrossRef]
    [Google Scholar]
  2. Ahmed M., Cramer S. D., Lyles D. S. 2004; Sensitivity of prostate tumors to wild type and M protein mutant vesicular stomatitis viruses. Virology 330:34–49 [CrossRef]
    [Google Scholar]
  3. Balachandran S., Barber G. N. 2000; Vesicular stomatitis virus (VSV) therapy of tumors. IUBMB Life 50:135–138 [CrossRef]
    [Google Scholar]
  4. Balachandran S., Porosnicu M., Barber G. N. 2001; Oncolytic activity of vesicular stomatitis virus is effective against tumors exhibiting aberrant p53, Ras, or myc function and involves the induction of apoptosis. J Virol 75:3474–3479 [CrossRef]
    [Google Scholar]
  5. Baltzis D., Qu L. K., Papadopoulou S., Blais J. D., Bell J. C., Sonenberg N., Koromilas A. E. 2004; Resistance to vesicular stomatitis virus infection requires a functional cross talk between the eukaryotic translation initiation factor 2 α kinases PERK and PKR. J Virol 78:12747–12761 [CrossRef]
    [Google Scholar]
  6. Black B. L., Lyles D. S. 1992; Vesicular stomatitis virus matrix protein inhibits host cell-directed transcription of target genes in vivo. J Virol 66:4058–4064
    [Google Scholar]
  7. Black B. L., Rhodes R. B., McKenzie M., Lyles D. S. 1993; The role of vesicular stomatitis virus matrix protein in inhibition of host-directed gene expression is genetically separable from its function in virus assembly. J Virol 67:4814–4821
    [Google Scholar]
  8. Black B. L., Brewer G., Lyles D. S. 1994; Effect of vesicular stomatitis virus matrix protein on host-directed translation in vivo. J Virol 68:555–560
    [Google Scholar]
  9. Chong L. D., Rose J. K. 1993; Membrane association of functional vesicular stomatitis virus matrix protein in vivo. J Virol 67:407–414
    [Google Scholar]
  10. Connor J. H., McKenzie M. O., Lyles D. S. 2006; Role of residues 121 to 124 of vesicular stomatitis virus matrix protein in virus assembly and virus–host interaction. J Virol 80:3701–3711 [CrossRef]
    [Google Scholar]
  11. Craven R. C., Harty R. N., Paragas J., Palese P., Wills J. W. 1999; Late domain function identified in the vesicular stomatitis virus M protein by use of rhabdovirus–retrovirus chimeras. J Virol 73:3359–3365
    [Google Scholar]
  12. Desforges M., Charron J., Berard S., Beausoleil S., Stojdl D. F., Despars G., Laverdiere B., Bell J. C., Talbot P. J. other authors 2001; Different host-cell shutoff strategies related to the matrix protein lead to persistence of vesicular stomatitis virus mutants on fibroblast cells. Virus Res 76:87–102 [CrossRef]
    [Google Scholar]
  13. Desforges M., Despars G., Berard S., Gosselin M., McKenzie M. O., Lyles D. S., Talbot P. J., Poliquin L. 2002; Matrix protein mutations contribute to inefficient induction of apoptosis leading to persistent infection of human neural cells by vesicular stomatitis virus. Virology 295:63–73 [CrossRef]
    [Google Scholar]
  14. Ferran M. C., Lucas-Lenard J. M. 1997; The vesicular stomatitis virus matrix protein inhibits transcription from the human beta interferon promoter. J Virol 71:371–377
    [Google Scholar]
  15. Gaddy D. F., Lyles D. S. 2005; Vesicular stomatitis viruses expressing wild-type or mutant M proteins activate apoptosis through distinct pathways. J Virol 79:4170–4179 [CrossRef]
    [Google Scholar]
  16. Harty R. N., Paragas J., Sudol M., Palese P. 1999; A proline-rich motif within the matrix protein of vesicular stomatitis virus and rabies virus interacts with WW domains of cellular proteins: implications for viral budding. J Virol 73:2921–2929
    [Google Scholar]
  17. Harty R. N., Brown M. E., McGettigan J. P., Wang G., Jayakar H. R., Huibregtse J. M., Whitt M. A., Schnell M. J. 2001; Rhabdoviruses and the cellular ubiquitin–proteasome system: a budding interaction. J Virol 75:10623–10629 [CrossRef]
    [Google Scholar]
  18. Irie T., Harty R. N. 2005; L-domain flanking sequences are important for host interactions and efficient budding of vesicular stomatitis virus recombinants. J Virol 79:12617–12622 [CrossRef]
    [Google Scholar]
  19. Irie T., Licata J. M., Jayakar H. R., Whitt M. A., Bell P., Harty R. N. 2004a; Functional analysis of late-budding domain activity associated with the PSAP motif within the vesicular stomatitis virus M protein. J Virol 78:7823–7827 [CrossRef]
    [Google Scholar]
  20. Irie T., Licata J. M., McGettigan J. P., Schnell M. J., Harty R. N. 2004b; Budding of PPxY-containing rhabdoviruses is not dependent on host proteins TGS101 and VPS4A. J Virol 78:2657–2665 [CrossRef]
    [Google Scholar]
  21. Jayakar H. R., Whitt M. A. 2002; Identification of two additional translation products from the matrix (M) gene that contribute to vesicular stomatitis virus cytopathology. J Virol 76:8011–8018 [CrossRef]
    [Google Scholar]
  22. Jayakar H. R., Murti K. G., Whitt M. A. 2000; Mutations in the PPPY motif of vesicular stomatitis virus matrix protein reduce virus budding by inhibiting a late step in virion release. J Virol 74:9818–9827 [CrossRef]
    [Google Scholar]
  23. Jayakar H. R., Jeetendra E., Whitt M. A. 2004; Rhabdovirus assembly and budding. Virus Res 106:117–132 [CrossRef]
    [Google Scholar]
  24. Kopecky S. A., Lyles D. S. 2003a; The cell-rounding activity of the vesicular stomatitis virus matrix protein is due to the induction of cell death. J Virol 77:5524–5528 [CrossRef]
    [Google Scholar]
  25. Kopecky S. A., Lyles D. S. 2003b; Contrasting effects of matrix protein on apoptosis in HeLa and BHK cells infected with vesicular stomatitis virus are due to inhibition of host gene expression. J Virol 77:4658–4669 [CrossRef]
    [Google Scholar]
  26. Kopecky S. A., Willingham M. C., Lyles D. S. 2001; Matrix protein and another viral component contribute to induction of apoptosis in cells infected with vesicular stomatitis virus. J Virol 75:12169–12181 [CrossRef]
    [Google Scholar]
  27. Lallemand C., Blanchard B., Palmieri M., Lebon P., May E., Tovey M. G. 2006; Single-stranded RNA viruses inactivate the transcriptional activity of p53 but induce NOXA-dependent apoptosis via post-translational modifications of IRF-1, IRF-3 and CREB. Oncogene 26:328–338
    [Google Scholar]
  28. Li Y., Luo L., Schubert M., Wagner R. R., Kang C. Y. 1993; Viral liposomes released from insect cells infected with recombinant baculovirus expressing the matrix protein of vesicular stomatitis virus. J Virol 67:4415–4420
    [Google Scholar]
  29. Licata J. M., Harty R. N. 2003; Rhabdoviruses and apoptosis. Int Rev Immunol 22:451–476 [CrossRef]
    [Google Scholar]
  30. Lichty B. D., Power A. T., Stojdl D. F., Bell J. C. 2004a; Vesicular stomatitis virus: re-inventing the bullet. Trends Mol Med 10:210–216 [CrossRef]
    [Google Scholar]
  31. Lichty B. D., Stojdl D. F., Taylor R. A., Miller L., Frenkel I., Atkins H., Bell J. C. 2004b; Vesicular stomatitis virus: a potential therapeutic virus for the treatment of hematologic malignancy. Hum Gene Ther 15:821–831 [CrossRef]
    [Google Scholar]
  32. Lyles D. S. 2000; Cytopathogenesis and inhibition of host gene expression by RNA viruses. Microbiol Mol Biol Rev 64:709–724 [CrossRef]
    [Google Scholar]
  33. Lyles D. S., McKenzie M. O. 1997; Activity of vesicular stomatitis virus M protein mutants in cell rounding is correlated with the ability to inhibit host gene expression and is not correlated with virus assembly function. Virology 229:77–89 [CrossRef]
    [Google Scholar]
  34. Power A. T., Wang J., Falls T. J., Paterson J. M., Parato K. A., Lichty B. D., Stojdl D. F., Forsyth P. A., Atkins H. other authors 2007; Carrier cell-based delivery of an oncolytic virus circumvents antiviral immunity. Mol Ther 15:123–130 [CrossRef]
    [Google Scholar]
  35. Publicover J., Ramsburg E., Robek M., Rose J. K. 2006; Rapid pathogenesis induced by a vesicular stomatitis virus matrix protein mutant: viral pathogenesis is linked to induction of tumor necrosis factor alpha. J Virol 80:7028–7036 [CrossRef]
    [Google Scholar]
  36. Stojdl D. F., Lichty B. D., tenOever B. R., Paterson J. M., Power A. T., Knowles S., Marius R., Reynard J., Poliquin L. other authors 2003; VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4:263–275 [CrossRef]
    [Google Scholar]
  37. Sur J. H., Allende R., Doster A. R. 2003; Vesicular stomatitis virus infection and neuropathogenesis in the murine model are associated with apoptosis. Vet Pathol 40:512–520 [CrossRef]
    [Google Scholar]
  38. Takaoka A., Hayakawa S., Yanai H., Stoiber D., Negishi H., Kikuchi H., Sasaki S., Imai K., Shibue T. other authors 2003; Integration of interferon- α / β signalling to p53 responses in tumour suppression and antiviral defence. Nature 424:516–523 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83096-0
Loading
/content/journal/jgv/10.1099/vir.0.83096-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error