1887

Abstract

West Nile virus (WNV) is a mosquito-borne flavivirus that was first introduced into the USA in the New York City area in 1999. Since its introduction, WNV has steadily increased both its host and geographical ranges. Outbreaks of the closely related flavivirus, St. Louis encephalitis virus (SLEV), occur in the USA periodically, but levels of activity and host range are more restricted than those of WNV. Understanding the selective pressures that drive arbovirus adaptation and evolution in their disparate mosquito and avian hosts is crucial to predicting their ability to persist and re-emerge. Here, we evaluated the phenotypes of mosquito cell-adapted WNV and SLEV. Results indicated that adaptations did not translate to adaptations for either virus, yet SLEV displayed attenuated growth in both mosquitoes and chickens, while WNV generally did not. growth analyses also indicated that WNV adaptations could be generalized to cell cultures derived from other mosquito species, while SLEV could not. Analysis of genetic diversity for passaged SLEV revealed a highly homogeneous population that differed significantly from previous results of high levels of diversity in WNV. We hypothesize that this difference in genetic diversity is directly related to the viruses' success in new and changing environments in the laboratory and that differences in a viruses' ability to produce and maintain heterogeneous populations in nature may in some instances explain the variable levels of success seen among arboviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83061-0
2007-09-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/9/2398.html?itemId=/content/journal/jgv/10.1099/vir.0.83061-0&mimeType=html&fmt=ahah

References

  1. Arias, A., Ruiz-Jarabo, C. M., Escarmis, C. & Domingo, E. ( 2004; ). Fitness increase of memory genomes in a viral quasispecies. J Mol Biol 339, 405–412.[CrossRef]
    [Google Scholar]
  2. Austin, R. J., Whiting, T. L., Anderson, R. A. & Drebot, M. A. ( 2004; ). An outbreak of West Nile virus-associated disease in domestic geese (Anser anser domesticus) upon initial introduction to a geographic region, with evidence of bird to bird transmission. Can Vet J 45, 117–123.
    [Google Scholar]
  3. Barrett, A. D., Monath, T. P., Cropp, C. B., Adkins, J. A., Ledger, T. N., Gould, E. A., Schlesinger, J. J., Kinney, R. M. & Trent, D. W. ( 1990; ). Attenuation of wild-type yellow fever virus by passage in HeLa cells. J Gen Virol 71, 2301–2306.[CrossRef]
    [Google Scholar]
  4. Bosio, C. F., Fulton, R. E., Salasek, M. L., Beaty, B. J. & Black, W. C. ( 2000; ). Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti. Genetics 156, 687–698.
    [Google Scholar]
  5. Briones, C., de Vicente, A., Molina-Paris, C. & Domingo, E. ( 2006; ). Minority memory genomes can influence the evolution of HIV-1 quasispecies in vivo. Gene 384, 129–138.[CrossRef]
    [Google Scholar]
  6. Chandler, L. J., Parsons, R. & Randle, Y. ( 2001; ). Multiple genotypes of St Louis encephalitis virus (Flaviviridae: Flavivirus) circulate in Harris County, Texas. Am J Trop Med Hyg 64, 12–19.
    [Google Scholar]
  7. Chen, W. J., Wu, H. R. & Chiou, S. S. ( 2003; ). E/NS1 modifications of dengue 2 virus after serial passages in mammalian and/or mosquito cells. Intervirology 46, 289–295.[CrossRef]
    [Google Scholar]
  8. Ciota, A. T., Lovelace, A. O., Ngo, K. A., Le, A., Maffei, J. G., Franke, M. A., Payne, A. F., Jones, S. A., Kauffman, E. B. & other authors ( 2007a; ). Cell-specific adaptation of two flaviviruses following serial passage in mosquito cell culture. Virology 357, 165–174.[CrossRef]
    [Google Scholar]
  9. Ciota, A. T., Ngo, K. A., Lovelace, A. O., Payne, A. F., Zhou, Y., Shi, P.-Y. & Kramer, L. D. ( 2007b; ). Role of the mutant spectrum in adaptation and replication of West Nile virus. J Gen Virol 88, 865–874.[CrossRef]
    [Google Scholar]
  10. Cooper, L. A. & Scott, T. W. ( 2001; ). Differential evolution of eastern equine encephalitis virus populations in response to host cell type. Genetics 157, 1403–1412.
    [Google Scholar]
  11. Cruz, L., Cardenas, V. M., Abarca, M., Rodriguez, T., Reyna, R. F., Serpas, M. V., Fontaine, R. E., Beasley, D. W. C., Travassos da Rosa, A. P. A. & other authors ( 2005; ). Short report: serological evidence of West Nile virus activity in El Salvador. Am J Trop Med Hyg 72, 612–615.
    [Google Scholar]
  12. Davis, C. T., Ebel, G. D., Lanciotti, R. S., Brault, A. C., Guzman, H., Siirin, M., Lambert, A., Parsons, R. E., Beasley, D. W. & other authors ( 2005; ). Phylogenetic analysis of North American West Nile virus isolates, 2001–2004: evidence for the emergence of a dominant genotype. Virology 342, 252–265.[CrossRef]
    [Google Scholar]
  13. Day, J. F. & Stark, L. M. ( 2000; ). Frequency of Saint Louis encephalitis virus in humans from Florida, USA: 1990–1999. J Med Entomol 37, 626–633.[CrossRef]
    [Google Scholar]
  14. Domingo, E. & Holland, J. J. ( 1997; ). RNA virus mutations and fitness for survival. Annu Rev Microbiol 51, 151–178.[CrossRef]
    [Google Scholar]
  15. Drake, J. W. & Holland, J. J. ( 1999; ). Mutation rates among RNA viruses. Proc Natl Acad Sci U S A 96, 13910–13913.[CrossRef]
    [Google Scholar]
  16. Dupuis, A. P., Marra, P. P. & Kramer, L. D. ( 2003; ). Serologic evidence of West Nile virus transmission, Jamaica, West Indies. Emerg Infect Dis 9, 860–863.[CrossRef]
    [Google Scholar]
  17. Dupuis, A. P., Marra, P. P., Reitsma, R., Jones, M. J., Louie, K. L. & Kramer, L. D. ( 2005; ). Serologic evidence for West Nile virus transmission in Puerto Rico and Cuba. Am J Trop Med Hyg 73, 474–476.
    [Google Scholar]
  18. Ebel, G. D., Rochlin, I., Longacker, J. & Kramer, L. D. ( 2005; ). Culex restuans (Diptera: culicidae) relative abundance and vector competence for West Nile virus. J Med Entomol 42, 838–843.[CrossRef]
    [Google Scholar]
  19. Eckels, K. H., Scott, R. M., Bancroft, W. H., Brown, J., Dubois, D. R., Summers, P. L., Russell, P. K. & Halstead, S. B. ( 1984; ). Selection of attenuated dengue 4 viruses by serial passage in primary kidney cells. V. Human response to immunization with a candidate vaccine prepared in fetal rhesus lung cells. Am J Trop Med Hyg 33, 684–689.
    [Google Scholar]
  20. Elizondo-Quiroga, D. ( 2005; ). West nile virus isolation in human and mosquitoes, Mexico. Emerg Infect Dis 11, 1449–1452.
    [Google Scholar]
  21. Goto, A., Hayasaka, D., Yoshii, K., Mizutani, T., Kariwa, H. & Takashima, I. ( 2003; ). A BHK-21 cell culture-adapted tick-borne encephalitis virus mutant is attenuated for neuroinvasiveness. Vaccine 21, 4043–4051.[CrossRef]
    [Google Scholar]
  22. Granwehr, B. P., Lillibridge, K. M., Higgs, S., Mason, P. W., Aronson, J. F., Campbell, G. A. & Barrett, A. D. T. ( 2004; ). West Nile virus: where are we now? Lancet Infect Dis 4, 547–556.[CrossRef]
    [Google Scholar]
  23. Halstead, S. B., Diwan, A. R., Marchette, N. J., Palumbo, N. E. & Srisukonth, L. ( 1984; ). Selection of attenuated dengue 4 viruses by serial passage in primary kidney cells. I. Attributes of uncloned virus at different passage levels. Am J Trop Med Hyg 33, 654–665.
    [Google Scholar]
  24. Hearn, H. J., Jr, Chappell, W. A., Demchak, P. & Kominik, J. W. ( 1966; ). Attenuation of aerosolized yellow fever virus after passage in cell culture. Bacteriol Rev 30, 615–623.
    [Google Scholar]
  25. Higgs, S., Snow, K. & Gould, E. A. ( 2004; ). The potential for West Nile virus to establish outside of its natural range: a consideration of potential mosquito vectors in the United Kingdom. Trans R Soc Trop Med Hyg 98, 82–87.[CrossRef]
    [Google Scholar]
  26. Holland, J. J., De La Torre, J. C., Clarke, D. K. & Duarte, E. ( 1991; ). Quantitation of relative fitness and great adaptability of clonal populations of RNA viruses. J Virol 65, 2960–2967.
    [Google Scholar]
  27. Jerzak, G., Bernard, K. A., Kramer, L. D. & Ebel, G. D. ( 2005; ). Genetic variation in West Nile virus from naturally infected mosquitoes and birds suggests quasispecies structure and strong purifying selection. J Gen Virol 86, 2175–2183.[CrossRef]
    [Google Scholar]
  28. Jerzak, G. V., Bernard, K., Kramer, L. D., Shi, P. Y. & Ebel, G. D. ( 2007; ). The West Nile virus mutant spectrum is host-dependant and a determinant of mortality in mice. Virology 360, 469–476.[CrossRef]
    [Google Scholar]
  29. Kramer, L. D. & Bernard, K. A. ( 2001; ). West Nile virus infection in birds and mammals. Ann N Y Acad Sci 951, 84–93.
    [Google Scholar]
  30. Kramer, L. D., Hardy, J. L., Presser, S. B. & Houk, E. J. ( 1981; ). Dissemination barriers for western equine encephalomyelitis virus in Culex tarsalis infected after ingestion of low viral doses. Am J Trop Med Hyg 30, 190–197.
    [Google Scholar]
  31. Lanciotti, R. S., Roehrig, J. T., Deubel, V., Smith, J., Parker, M., Steele, K., Crise, B., Volpe, K. E., Crabtree, M. B. & other authors ( 1999; ). Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286, 2333–2337.[CrossRef]
    [Google Scholar]
  32. Levashina, E. A., Moita, L. F., Blandin, S., Vriend, G., Lagueux, M. & Kafatos, F. C. ( 2001; ). Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104, 709–718.[CrossRef]
    [Google Scholar]
  33. Marra, P. P., Griffing, S. M. & McLean, R. G. ( 2003; ). West Nile virus and wildlife health. Emerg Infect Dis 9, 898–899.[CrossRef]
    [Google Scholar]
  34. Martinez, M. A., Carrillo, C., Gonzalez-Candelas, F., Moya, A., Domingo, E. & Sobrino, F. ( 1991; ). Fitness alteration of foot-and-mouth disease virus mutants: measurement of adaptability of viral quasispecies. J Virol 65, 3954–3957.
    [Google Scholar]
  35. McLean, R. G., Ubico, S. R., Docherty, D. E., Hansen, W. R., Sileo, L. & McNamara, T. S. ( 2001; ). West Nile virus transmission and ecology in birds. Ann N Y Acad Sci 951, 54–57.
    [Google Scholar]
  36. Miller, B. R. & Mitchell, C. J. ( 1986; ). Passage of yellow fever virus: its effect on infection and transmission rates in Aedes aegypti. Am J Trop Med Hyg 35, 1302–1309.
    [Google Scholar]
  37. Monath, T. P. & Heinz, F. X. ( 1996; ). Flaviviruses. In Fields Virology, 3rd edn, pp. 961–1034. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia: Lippincott Williams and Wilkins.
  38. Morales, M. A., Barrandeguy, M., Fabbri, C., Garcia, J. B., Vissani, A., Trono, K., Gutierrez, G., Pigretti, S., Menchaca, H. & other authors ( 2006; ). West Nile virus isolation from equines in Argentina, 2006. Emerg Infect Dis 12, 1559–1561.[CrossRef]
    [Google Scholar]
  39. Novella, I. S., Hershey, C. L., Escarmis, C., Domingo, E. & Holland, J. J. ( 1999a; ). Lack of evolutionary stasis during alternating replication of an arbovirus in insect and mammalian cells. J Mol Biol 287, 459–465.[CrossRef]
    [Google Scholar]
  40. Novella, I. S., Quer, J., Domingo, E. & Holland, J. J. ( 1999b; ). Exponential fitness gains of RNA virus populations are limited by bottleneck effects. J Virol 73, 1668–1671.
    [Google Scholar]
  41. Payne, A. F., Binduga-Gajewska, I., Kauffman, E. B. & Kramer, L. D. ( 2006; ). Quantitation of flaviviruses by fluorescent focus assay. J Virol Methods 134, 183–187.[CrossRef]
    [Google Scholar]
  42. Rao, P. N. & Rai, K. S. ( 1990; ). Genome evolution in the mosquitoes and other closely related members of superfamily Culicoidea. Hereditas 113, 139–144.
    [Google Scholar]
  43. Reisen, W. K. ( 2003; ). Epidemiology of St Louis encephalitis virus. Adv Virus Res 61, 139–183.
    [Google Scholar]
  44. Reisen, W. K., Fang, Y. & Martinez, V. M. ( 2005; ). Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St Louis encephalitis virus transmission. J Med Entomol 42, 367–375.
    [Google Scholar]
  45. Rosen, L. & Gubler, D. ( 1974; ). The use of mosquitoes to detect and propagate dengue viruses. Am J Trop Med Hyg 23, 1153–1160.
    [Google Scholar]
  46. Ruiz-Jarabo, C. M., Arias, A., Baranowski, E., Escarmis, C. & Domingo, E. ( 2000; ). Memory in viral quasispecies. J Virol 74, 3543–3547.[CrossRef]
    [Google Scholar]
  47. Schneider, W. L. & Roossinck, M. J. ( 2000; ). Evolutionarily related Sindbis-like plant viruses maintain different levels of population diversity in a common host. J Virol 74, 3130–3134.[CrossRef]
    [Google Scholar]
  48. Schoepp, R. J., Beaty, B. J. & Eckels, K. H. ( 1990; ). Dengue 3 virus infection of Aedes albopictus and Aedes aegypti: comparison of parent and progeny candidate vaccine viruses. Am J Trop Med Hyg 42, 89–96.
    [Google Scholar]
  49. Weaver, S. C., Brault, A. C., Kang, W. & Holland, J. J. ( 1999; ). Genetic and fitness changes accompanying adaptation of an arbovirus to vertebrate and invertebrate cells. J Virol 73, 4316–4326.
    [Google Scholar]
  50. Woodring, J. L., Higgs, S. & Beaty, B. J. ( 1996; ). Natural cycles of vector-borne pathogens. In The Biology of Disease Vectors, pp. 51–72. Edited by B. J. Beaty & W. C. Marquardt. Niwot: University Press of Colorado.
  51. Zarate, S. & Novella, I. S. ( 2004; ). Vesicular stomatitis virus evolution during alternation between persistent infection in insect cells and acute infection in mammalian cells is dominated by the persistence phase. J Virol 78, 12236–12242.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83061-0
Loading
/content/journal/jgv/10.1099/vir.0.83061-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error