1887

Abstract

Genome synthesis in paramyxoviruses, including Nipah virus (NiV), is controlled by sequence elements that reside in the non-coding nucleotides at the 5′-trailer (3′-antigenomic) end that make up the antigenomic promoter (AGP). Using a chloramphenicol acetyl transferase-based plasmid-driven minigenome system, the terminal 96 nt of NiV AGP were first mutagenized in blocks of three hexamers to enable broad mapping of the minigenome functional regions. This was followed by further dissection of these functional regions to define the -acting elements contained therein. Results based on RNA analysis and reporter gene activity identified a bipartite promoter structure similar to that seen in related viruses, but with some distinct differences: in NiV, each of the two discrete replication control elements was bimodal, characterized by a critical conserved region (nt 1–12 and 79–91) and a contiguous non-conserved region (nt 13–36 and 73–78), which appeared less important. The regulatory role of these less critical regions was underscored by the use of a two-step mutation strategy, which revealed the additive detrimental effect of substitutions in this part of the terminal element. The structure and sequence characteristics of the internal control element was also different: it involved four contiguous hexamers, and the region encompassing three of these (nt 79–96, corresponding to hexamers 14, 15 and 16), although analogous in position to the equivalent element in the Sendai virus AGP, was characterized by the distinct 5′-(NNN)(NNNNN) motif.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83035-0
2007-09-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/9/2542.html?itemId=/content/journal/jgv/10.1099/vir.0.83035-0&mimeType=html&fmt=ahah

References

  1. Albertini A. A. V., Wernimount A. K., Muziol T., Ravelli R. B. G., Clapier C. R., Schoehn G., Weissenhorn W., Ruigrok R. W. H. 2006; Crystal structure of rabies virus nucleoprotein–RNA complex. Science 313:360–363 [CrossRef]
    [Google Scholar]
  2. Bae S.-H., Cheong H.-K., Lee J. H., Cheong G., Kainosho M., Choi B.-S. 2001; Structural features of an influenza virus promoter and their implications for viral synthesis. Proc Natl Acad Sci U S A 98:10602–10607 [CrossRef]
    [Google Scholar]
  3. Bankamp B., Kearney S. P., Liu X., Bellini W. J., Rota P. A. 2002; Activity of polymerase proteins of vaccine and wild-type measles virus strains in a minigenome replication assay. J Virol 76:7073–7081 [CrossRef]
    [Google Scholar]
  4. Banyard A. C., Baron M. D., Barrett T. 2005; A role for virus promoters in determining the pathogenesis of Rinderpest virus in cattle. J Gen Virol 86:1083–1092 [CrossRef]
    [Google Scholar]
  5. Blumberg B. M., Giorgi C., Kolakofsky D. 1983; N protein of vesicular stomatitis virus selectively encapsidates leader RNA in vitro. Cell 32:559 [CrossRef]
    [Google Scholar]
  6. Blumberg B. M., Chan J., Udem S. A. 1991; Function of 3′ and 5′ end sequences in theory and practice. In The Paramyxoviruses pp 235–247 Edited by Kingsbury D. W. New York, NY: Plenum;
    [Google Scholar]
  7. Calain P., Roux L. 1993; The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J Virol 67:4822–4830
    [Google Scholar]
  8. Calain P., Roux L. 1995; Functional characterization of genomic and antigenomic promoters of Sendai virus. Virology 212:163–173 [CrossRef]
    [Google Scholar]
  9. Chadha M. S., Comer J. A., Lowe L., Rota P. A., Rollin P. E., Bellini W. J., Ksiazek T. G., Mishra A. C. 2006; Nipah virus-associated encephalitis outbreak, Siliguri, India. Emerg Infect Dis 12:235–240 [CrossRef]
    [Google Scholar]
  10. Chua K. B., Goh K. J., Wong K. T., Kamarulzaman A., Tan P. S., Ksiazek T. G., Zaki S. R., Paul G., Lam S. K., Tan C. T. 1999; Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354:1257–1259 [CrossRef]
    [Google Scholar]
  11. Cowton V. M., McGivern D. R., Fearns R. 2006; Unraveling the complexities of respiratory syncytial virus RNA synthesis. J Gen Virol 87:1805–1821 [CrossRef]
    [Google Scholar]
  12. De B. P., Gupta S., Zhao H., Drasba J. A., Banerjee A. K. 1996; Specific interaction in vitro and in vivo of GAPDH and La protein with cis -acting RNAs of human parainfluenza virus type 3. J Biol Chem 271:24728–24735 [CrossRef]
    [Google Scholar]
  13. Egelman E. H., Wu S.-S., Amrein M., Portner A., Murti G. 1989; The Sendai virus nucleocapsid exists as four different helical states. J Virol 63:2233–2243
    [Google Scholar]
  14. Garner M. G., Whan I. F., Gard G. P., Phillips D. 2001; The expected economic impact of selected exotic diseases on the pig industry of Australia. Rev Sci Tech Off Int Epiz 20:671–685
    [Google Scholar]
  15. Green T. J., Zhang X., Wertz G., Ming L. 2006; Structure of vesicular stomatitis virus nucleoprotein–RNA complex. Science 313:357–360 [CrossRef]
    [Google Scholar]
  16. Halpin K., Bankamp B., Harcourt B., Bellini W., Rota P. 2004; Nipah virus conforms to the rule of six in a minigenome replication assay. J Gen Virol 85:701–707 [CrossRef]
    [Google Scholar]
  17. Harcourt B. H., Tamin A., Kziazek T. G., Rollin P. E., Anderson L. J., Bellini W. J., Rota P. 2000; Molecular characterization of Nipah virus, a newly emergent paramyxovirus. Virology 271:334–349 [CrossRef]
    [Google Scholar]
  18. Harcourt B. H., Lowe L., Tamin A., Liu X., Bankamp B., Bowden N., Rollin P. E., Comer J. A., Ksiazek T. G. other authors 2005; Genetic characterization of Nipah virus. Bangladesh: 2004 Emerg Infect Dis 11:1594–1597 [CrossRef]
    [Google Scholar]
  19. Harmon S. B., Wertz G. W. 2002; Transcription termination modulated by nucleotides outside the characterized gene end sequence of respiratory syncytial virus. Virology 300:304–315 [CrossRef]
    [Google Scholar]
  20. Hoffman M. A., Banerjee A. K. 2000; Precise mapping of the replication and transcription promoters of human parainfluenza virus type 3. Virology 269:201–211 [CrossRef]
    [Google Scholar]
  21. Hoffman M. A., Thorson L. M., Vickman J. E., Anderson J. S., May N. A., Scweitzer M. N. 2006; Roles of human parainfluenza virus type 3 bases 13 to 78 in replication and transcription: identification of an additional replication promoter element and evidence for internal transcription initiation. J Virol 80:5388–5396 [CrossRef]
    [Google Scholar]
  22. Hsu V. P., Hossain M. J., Parashar U. D., Monsur Ali M., Ksiazek T. G., Niezgoda M. 2004; Nipah virus encephalitis reemergence, Bangladesh. Emerg Infect Dis 10:2082–2087 [CrossRef]
    [Google Scholar]
  23. ICDDRB 2004a; Nipah encephalitis outbreak over wide area of western Bangladesh, 2004. Health Sci Bull 2:7–11
    [Google Scholar]
  24. ICDDRB 2004b; Person-to-person transmission of Nipah virus during outbreak in Faridpur District. Health Sci Bull 2:5–9
    [Google Scholar]
  25. Jacobson A., Peltz S. W. 1996; Interrelationship of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem 65:693–739 [CrossRef]
    [Google Scholar]
  26. Keene J. D., Thornton B. J., Emerso S. U. 1981; Sequence-specific contact between the RNA polymerase of vesicular stomatitis virus and the leader RNA gene. Proc Natl Acad Sci U S A 78:6191–6195 [CrossRef]
    [Google Scholar]
  27. Keller M. A., Murphy S. K., Parks G. D. 2001; RNA replication from simian virus 5 antigenomic promoter requires three sequence-dependent elements separated by sequence-independent spacer regions. J Virol 75:3993–3998 [CrossRef]
    [Google Scholar]
  28. Kolakofsky D., Pelet T., Garcin D., Hausmann S., Curran J., Roux L. 1998; Paramyxovirus RNA synthesis and the requirement for hexamer genome length: rule of six revisited. J Virol 72:891–899
    [Google Scholar]
  29. Kouznetzoff A., Buckle M., Tordo N. 1998; Identification of a region of the rabies virus N protein involved in direct binding to the viral RNA. J Gen Virol 79:1005–1013
    [Google Scholar]
  30. Lamb R. A., Kolakofsky D. 2001; Paramyxoviridae : the viruses and their replication. In Fields Virology, 4th edn. pp 1305–1340 Edited by Knipe D. M. Philadelphia, PA: Lippincott, Williams and Wilkins;
    [Google Scholar]
  31. Lanford R. E., Chavez D., Chisari F. V., Sureau C. 1995; Lack of detection of negative-strand hepatitis C virus RNA in peripheral blood mononuclear cells and other extrahepatic tissues by the highly strand-specific rTth reverse transcriptase. J Virol 69:8079–8083
    [Google Scholar]
  32. Lowen A. C., Elliott R. M. 2005; Mutational analysis of the non-conserved nucleotides in the bunyamwera orthobunyavirus S segment untranslated regions. J Virol 79:12861–12870 [CrossRef]
    [Google Scholar]
  33. Marcos F., Ferreira L., Cros J., Park T., Nakaya T., Garcia-Sastre A., Villar E. 2005; Mapping the RNA promoter of Newcastle disease virus. Virology 331:396–406 [CrossRef]
    [Google Scholar]
  34. Mioulet V., Barrett T., Baron M. D. 2001; Scanning mutagenesis identifies critical residues in the rinderpest virus genome promoter. J Gen Virol 82:2905–2911
    [Google Scholar]
  35. Moyer S. A., Smallwood-Kentro S., Haddad A., Prevec A. 1991; Assembly and transcription of synthetic vesicular stomatitis virus nucleocapsids. J Virol 65:2170–2178
    [Google Scholar]
  36. Murphy S. K., Parks G. D. 1998; A functional antigenomic promoter for the paramyxovirus simian virus 5 requires proper spacing between an essential internal element and the 3′ terminus. J Virol 72:10–19
    [Google Scholar]
  37. Murphy S. K., Parks G. D. 1999; RNA replication of the paramyxovirus simian virus 5 requires an internal repeated (CGNNN) sequence motif. J Virol 73:805–809
    [Google Scholar]
  38. Peeples M. E., Collins P. L. 2000; Mutations in the 5′ trailer region of a respiratory syncytial virus minigenome which limit RNA replication to one step. J Virol 74:146–155 [CrossRef]
    [Google Scholar]
  39. Pelet T., Delenda C., Gubbay O., Garcin D., Kolakofsky D. 1996; Partial characterization of a Sendai virus replication promoter and the rule of six. Virology 224:405–414 [CrossRef]
    [Google Scholar]
  40. Smallwood S., Moyer S. A. 1993; Promoter analysis of vesicular stomatitis virus RNA polymerase. Virology 192:254–263 [CrossRef]
    [Google Scholar]
  41. Tapparel C., Roux L. 1996; The efficiency of Sendai virus genome replication: the importance of RNA primary sequence independent of terminal complementarity. Virology 225:163–167 [CrossRef]
    [Google Scholar]
  42. Tapparel C., Maurice D., Roux L. 1998; The activity of Sendai virus genomic and antigenomic promoters requires a second element past the leader template region: a motif (GNNNNN)3 is essential for replication. J Virol 72:3117–3128
    [Google Scholar]
  43. Walpita P. 2004; An internal element of measles virus antigenomic promoter modulates replication efficiency. Virus Res 100:199–211 [CrossRef]
    [Google Scholar]
  44. WHO 2004; Nipah virus outbreak(s) in Bangladesh, January–April. Wkly Epidemiol Rec 79:168–171
    [Google Scholar]
  45. Wilusz J., Kurilla M. G., Keene J. D. 1983; A host protein (La) binds to a unique species of minus-sense leader RNA during replication of vesicular stomatitis virus. Proc Natl Acad Sci U S A 80:5827–5831 [CrossRef]
    [Google Scholar]
  46. Xu D., Lin S. L., Nussinov R. 1997; Protein binding versus protein folding: the role of hydrophilic bridges in protein associations. J Mol Biol 265:68–84 [CrossRef]
    [Google Scholar]
  47. Zheng H., Palese P., Garcia-Sastre A. 1996; Nonconserved nucleotides at the 3′ and 5′ ends of an influenza A virus RNA play an important role in viral RNA replication. Virology 217:242–251 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83035-0
Loading
/content/journal/jgv/10.1099/vir.0.83035-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error