1887

Abstract

The effect of a recombination event in the genomic 3′ end on the biological properties and competitiveness of plum pox virus (PPV) was investigated. Therefore, a fragment spanning the coat protein (CP) coding region and a part of the 3′ non-translated region of a non-aphid-transmissible strain of PPV (PPV-NAT) was replaced by the corresponding region of a PPV sour cherry isolate (PPV-SoC). The resulting chimera (PPV-NAT/SoC) caused severe symptoms in , resembling those of PPV-NAT. In mixed infections with either of the parental viruses, the chimera PPV-NAT/SoC was less competitive. Labelling experiments with DsRed showed that PPV-NAT/SoC (PPV-NAT/SoC-) moved more slowly from cell to cell than PPV-NAT (PPV-NAT-). In mixed infections of PPV-NAT/SoC- with a green fluorescent protein-expressing PPV-NAT (PPV-NAT-), spatial separation of the viruses was observed. These data suggest that, in PPV infections, symptom severity and competitiveness are independent aspects and that spatial separation may contribute to the displacement of a recombinant virus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82989-0
2007-10-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/10/2846.html?itemId=/content/journal/jgv/10.1099/vir.0.82989-0&mimeType=html&fmt=ahah

References

  1. Ali, A., Li, H., Schneider, W. L., Sherman, D. J., Gray, S., Smith, D. & Roossinck, M. J. ( 2006; ). Analysis of genetic bottlenecks during horizontal transmission of cucumber mosaic virus. J Virol 80, 8345–8350.[CrossRef]
    [Google Scholar]
  2. Carrasco, P., Daros, J. A., Gudelo-Romero, P. & Elena, S. F. ( 2006; ). A real-time RT-PCR assay for quantifying the fitness of tobacco etch virus in competition experiments. J Virol Methods 139, 181–188.
    [Google Scholar]
  3. Cervera, M. T., Riechmann, J. L., Martin, M. T. & Garcia, J. A. ( 1993; ). 3′-Terminal sequence of the plum pox virus PS and ž6 isolates: evidence for RNA recombination within the potyvirus group. J Gen Virol 74, 329–334.[CrossRef]
    [Google Scholar]
  4. Davis, S. J. & Vierstra, R. D. ( 1998; ). Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol Biol 36, 521–528.[CrossRef]
    [Google Scholar]
  5. Dietrich, C. & Maiss, E. ( 2002; ). Red fluorescent protein DsRed from Discosoma sp. as a reporter protein in higher plants. Biotechniques 32, 286, 288–290, 292–293.
    [Google Scholar]
  6. Dietrich, C. & Maiss, E. ( 2003; ). Fluorescent labelling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plants. J Gen Virol 84, 2871–2876.[CrossRef]
    [Google Scholar]
  7. Diveki, Z., Salanki, K. & Balazs, E. ( 2002; ). Limited utility of blue fluorescent protein (BFP) in monitoring plant virus movement. Biochimie 84, 997–1002.[CrossRef]
    [Google Scholar]
  8. Dolja, V. V., Haldeman, R., Robertson, N. L., Dougherty, W. G. & Carrington, J. C. ( 1994; ). Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. EMBO J 13, 1482–1491.
    [Google Scholar]
  9. Dolja, V. V., Haldeman-Cahill, R., Montgomery, A. E., Vandenbosch, K. A. & Carrington, J. C. ( 1995; ). Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology 206, 1007–1016.[CrossRef]
    [Google Scholar]
  10. Dreher, T. W. ( 1999; ). Functions of the 3′-untranslated regions of positive strand RNA viral genomes. Annu Rev Phytopathol 37, 151–174.[CrossRef]
    [Google Scholar]
  11. Fanigliulo, A., Comes, S., Maiss, E., Piazzolla, P. & Crescenzi, A. ( 2003; ). The complete nucleotide sequence of plum pox virus isolates from sweet (PPV-SwC) and sour (PPV-SoC) cherry and their taxonomic relationships within the species. Arch Virol 148, 2137–2153.[CrossRef]
    [Google Scholar]
  12. French, R. & Stenger, D. C. ( 2003; ). Evolution of wheat streak mosaic virus: dynamics of population growth within plants may explain limited variation. Annu Rev Phytopathol 41, 199–214.[CrossRef]
    [Google Scholar]
  13. Glais, L., Tribodet, M. & Kerlan, C. ( 2002; ). Genomic variability in potato potyvirus Y (PVY): evidence that PVY(N)W and PVY(NTN) variants are single to multiple recombinants between PVY(O) and PVY(N) isolates. Arch Virol 147, 363–378.[CrossRef]
    [Google Scholar]
  14. Glasa, M., Labonne, G. & Quiot, J. B. ( 2003; ). Effect of temperature on plum pox virus infection. Acta Virol 47, 49–52.
    [Google Scholar]
  15. Glasa, M., Palkovics, L., Kominek, P., Labonne, G., Pittnerova, S., Kudela, O., Candresse, T. & Subr, Z. ( 2004; ). Geographically and temporally distant natural recombinant isolates of plum pox virus (PPV) are genetically very similar and form a unique PPV subgroup. J Gen Virol 85, 2671–2681.[CrossRef]
    [Google Scholar]
  16. Hall, J. S., French, R., Hein, G. L., Morris, T. J. & Stenger, D. C. ( 2001; ). Three distinct mechanisms facilitate genetic isolation of sympatric wheat streak mosaic virus lineages. Virology 282, 230–236.[CrossRef]
    [Google Scholar]
  17. Jenner, C. E., Wang, X., Tomimura, K., Ohshima, K., Ponz, F. & Walsh, J. A. ( 2003; ). The dual role of the potyvirus P3 protein of turnip mosaic virus as a symptom and avirulence determinant in brassicas. Mol Plant Microbe Interact 16, 777–784.[CrossRef]
    [Google Scholar]
  18. Jridi, C., Martin, J. F., Marie-Jeanne, V., Labonne, G. & Blanc, S. ( 2006; ). Distinct viral populations differentiate and evolve independently in a single perennial host plant. J Virol 80, 2349–2357.[CrossRef]
    [Google Scholar]
  19. Krause-Sakate, R., Fakhfakh, H., Peypelut, M., Pavan, M. A., Zerbini, F. M., Marrakchi, M., Candresse, T. & Le Gall, O. ( 2004; ). A naturally occurring recombinant isolate of lettuce mosaic virus. Arch Virol 149, 191–197.
    [Google Scholar]
  20. Lopez-Moya, J. J., Fernandez-Fernandez, M. R., Cambra, M. & Garcia, J. A. ( 2000; ). Biotechnological aspects of plum pox virus. J Biotechnol 76, 121–136.[CrossRef]
    [Google Scholar]
  21. Maiss, E., Timpe, U., Brisske-Rode, A., Lesemann, D. E. & Casper, R. ( 1992; ). Infectious in vivo transcripts of a plum pox potyvirus full-length cDNA clone containing the cauliflower mosaic virus 35S RNA promoter. J Gen Virol 73, 709–713.[CrossRef]
    [Google Scholar]
  22. Matz, M. V., Fradkov, A. F., Labas, Y. A., Savitsky, A. P., Zaraisky, A. G., Markelov, M. L. & Lukyanov, S. A. ( 1999; ). Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17, 969–973.[CrossRef]
    [Google Scholar]
  23. Menzel, W., Jelkmann, W. & Maiss, E. ( 2002; ). Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. J Virol Methods 99, 81–92.[CrossRef]
    [Google Scholar]
  24. Moreno, I. M., Malpica, J. M., Díaz-Pendón, J. A., Moriones, E., Fraile, A. & Garcia-Arenal, F. ( 2004; ). Variability and genetic structure of the population of watermelon mosaic virus infecting melon in Spain. Virology 318, 451–460.[CrossRef]
    [Google Scholar]
  25. Ohshima, K., Yamaguchi, Y., Hirota, R., Hamamoto, T., Tomimura, K., Tan, Z., Sano, T., Azuhata, F., Walsh, J. A. & other authors ( 2002; ). Molecular evolution of Turnip mosaic virus: evidence of host adaptation, genetic recombination and geographical spread. J Gen Virol 83, 1511–1521.
    [Google Scholar]
  26. Pruss, G., Ge, X., Shi, X. M., Carrington, J. C. & Vance, V. B. ( 1997; ). Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell 9, 859–868.[CrossRef]
    [Google Scholar]
  27. Rojas, M. R., Zerbini, F. M., Allison, R. F., Gilbertson, R. L. & Lucas, W. J. ( 1997; ). Capsid protein and helper component-proteinase function as potyvirus cell-to-cell movement proteins. Virology 237, 283–295.[CrossRef]
    [Google Scholar]
  28. Roossinck, M. J. ( 1997; ). Mechanisms of plant virus evolution. Annu Rev Phytopathol 35, 191–209.[CrossRef]
    [Google Scholar]
  29. Roossinck, M. J. ( 2005; ). Symbiosis versus competition in plant virus evolution. Nat Rev Microbiol 3, 917–924.[CrossRef]
    [Google Scholar]
  30. Saenz, P., Cervera, M. T., Dallot, S., Quiot, L., Quiot, J. B., Riechmann, J. L. & Garcia, J. A. ( 2000; ). Identification of a pathogenicity determinant of plum pox virus in the sequence encoding the C-terminal region of protein P3+6K1. J Gen Virol 81, 557–566.
    [Google Scholar]
  31. Schneider, W. L. & Roossinck, M. J. ( 2000; ). Evolutionarily related Sindbis-like plant viruses maintain different levels of population diversity in a common host. J Virol 74, 3130–3134.[CrossRef]
    [Google Scholar]
  32. Stenger, D. C., Young, D. A. & French, R. ( 2006; ). Random mutagenesis of wheat streak mosaic virus HC-Pro: non-infectious interfering mutations in a gene dispensable for systemic infection of plants. J Gen Virol 87, 2741–2747.[CrossRef]
    [Google Scholar]
  33. Szittya, G., Silhavy, D., Molnar, A., Havelda, Z., Lovas, A., Lakatos, L., Banfalvi, Z. & Burgyan, J. ( 2003; ). Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J 22, 633–640.[CrossRef]
    [Google Scholar]
  34. Takeshita, M., Kikuhara, K., Kuwata, S., Furuya, N. & Takanami, Y. ( 2004a; ). Competition between wild-type virus and a reassortant from subgroups I and II of CMV and activation of antiviral responses in cowpea. Arch Virol 149, 1851–1857.
    [Google Scholar]
  35. Takeshita, M., Shigemune, N., Kikuhara, K., Furuya, N. & Takanami, Y. ( 2004b; ). Spatial analysis for exclusive interactions between subgroups I and II of cucumber mosaic virus in cowpea. Virology 328, 45–51.[CrossRef]
    [Google Scholar]
  36. Tan, Z., Wada, Y., Chen, J. & Ohshima, K. ( 2004; ). Inter- and intralineage recombinants are common in natural populations of turnip mosaic virus. J Gen Virol 85, 2683–2696.[CrossRef]
    [Google Scholar]
  37. Urcuqui-Inchima, S., Haenni, A. L. & Bernardi, F. ( 2001; ). Potyvirus proteins: a wealth of functions. Virus Res 74, 157–175.[CrossRef]
    [Google Scholar]
  38. van Boxtel, J., Thomas, C. L. & Maule, A. J. ( 2000; ). Phylogenetic analysis of two potyvirus pathogens of commercial cowpea lines: implications for obtaining pathogen-derived resistance. Virus Genes 20, 71–77.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82989-0
Loading
/content/journal/jgv/10.1099/vir.0.82989-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2846 – 2851

Competition of PPV-NAT, PPV-NAT/SoC and PPV-SoC in different mixed infections during mechanical passaging. Specific PCR fragments of PPV-NAT (496 bp), PPV-NAT/SoC (547 bp) and PPV-SoC (751 bp) are given. Viruses have been detected by RT-PCR in firstly inoculated plants (lanes 1–3) and after two passages (lanes 4–6). Virus combinations were PPV-NAT+PPV-SoC (lanes 1, 4), PPV-NAT/SoC+PPV-SoC (lanes 2, 5) and PPV-NAT+PPV-NAT/SoC (lanes 3, 6). After two passages, PPV-NAT outcompeted PPV-SoC (lane 4) and PPV-NAT/SoC (lane 6). A minor fragment in lane 5 (asterisk) indicates reduced presence of PPV-NAT/SoC in co-infection with PPV-SoC. Fragments were separated by PAGE (5 % gel). Fragments of the marker indicate 500, 600, 700 and 800 bp.



IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error