1887

Abstract

(CSFV) is a member of the genus in the family . The N product of CSFV targets the host's innate immune response and can prevent the production of type I interferon (IFN). The mechanism by which CSFV orchestrates this inhibition was investigated and it is shown that, like the related pestivirus bovine viral diarrhea virus (BVDV), this involves the N protein targeting interferon regulatory factor-3 (IRF-3) for degradation by proteasomes and thus preventing IRF-3 from activating transcription from the IFN- promoter. Like BVDV, the steady-state levels of IRF-3 mRNA are not reduced markedly by CSFV infection or N overexpression. Moreover, IFN- stimulation of CSFV-infected cells induces the antiviral protein MxA, indicating that, as in BVDV-infected cells, the JAK/STAT pathway is not targeted for inhibition.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82934-0
2007-11-01
2020-10-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/11/3002.html?itemId=/content/journal/jgv/10.1099/vir.0.82934-0&mimeType=html&fmt=ahah

References

  1. Andrejeva J., Childs K. S., Young D. F., Carlos T. S., Stock N., Goodbourn S., Randall R. E. 2004; The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN- β promoter. Proc Natl Acad Sci U S A 101:17264–17269 [CrossRef]
    [Google Scholar]
  2. Baigent S. J., Zhang G., Fray M. D., Flick-Smith H., Goodbourn S., McCauley J. W. 2002; Inhibition of beta interferon transcription by noncytopathogenic bovine viral diarrhea virus is through an interferon regulatory factor-3-dependent mechanism. J Virol 76:8979–8988 [CrossRef]
    [Google Scholar]
  3. Baigent S. J., Goodbourn S., McCauley J. W. 2004; Differential activation of interferon regulatory factors-3 and -7 by non-cytopathogenic and cytopathogenic bovine viral diarrhoea virus. Vet Immunol Immunopathol 100:135–144 [CrossRef]
    [Google Scholar]
  4. Bauhofer O., Summerfield A., Sakoda Y., Tratschin J. D., Hofmann M. A., Ruggli N. 2007; Npro of classical swine fever virus interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol 81:3087–3096 [CrossRef]
    [Google Scholar]
  5. Charleston B., Fray M. D., Baigent S., Carr B. V., Morrison W. I. 2001; Establishment of persistent infection with non-cytopathic bovine viral diarrhoea virus in cattle is associated with a failure to induce type I interferon. J Gen Virol 82:1893–1897
    [Google Scholar]
  6. Enoch T., Zinn K., Maniatis T. 1986; Activation of the human β -interferon gene requires an interferon-inducible factor. Mol Cell Biol 6:801–810
    [Google Scholar]
  7. Gil L. H., Ansari I. H., Vassilev V., Liang D., Lai V. C., Zhong W., Hong Z., Dubovi E. J., Donis R. O. 2006; The amino-terminal domain of bovine viral diarrhea virus Npro protein is necessary for alpha/beta interferon antagonism. J Virol 80:900–911 [CrossRef]
    [Google Scholar]
  8. Goodbourn S., Didcock L. J., Randall R. E. 2000; Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol 81:2341–2364
    [Google Scholar]
  9. Haller O., Kochs G., Weber F. 2006; The interferon response circuit: induction and suppression by pathogenic viruses. Virology 344:119–130 [CrossRef]
    [Google Scholar]
  10. Hilton L., Moganeradj K., Zhang G., Chen Y. H., Randall R. E., McCauley J. W., Goodbourn S. 2006; The Npro product of bovine viral diarrhea virus inhibits DNA binding by interferon regulatory factor 3 and targets it for proteasomal degradation. J Virol 80:11723–11732 [CrossRef]
    [Google Scholar]
  11. Hornung V., Ellegast J., Kim S., Brzozka K., Jung A., Kato H., Poeck H., Akira S., Conzelmann K. K. other authors 2006; 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997 [CrossRef]
    [Google Scholar]
  12. Horscroft N., Bellows D., Ansari I., Lai V. C., Dempsey S., Liang D., Donis R., Zhong W., Hong Z. 2005; Establishment of a subgenomic replicon for bovine viral diarrhea virus in Huh-7 cells and modulation of interferon-regulated factor 3-mediated antiviral response. J Virol 79:2788–2796 [CrossRef]
    [Google Scholar]
  13. Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., Uematsu S., Jung A., Kawai T. other authors 2006; Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105 [CrossRef]
    [Google Scholar]
  14. Kawai T., Akira S. 2006; Innate immune recognition of viral infection. Nat Immunol 7:131–137
    [Google Scholar]
  15. King P., Goodbourn S. 1994; The β -interferon promoter responds to priming through multiple independent regulatory elements. J Biol Chem 269:30609–30615
    [Google Scholar]
  16. La Rocca S. A., Herbert R. J., Crooke H., Drew T. W., Wileman T. E., Powell P. P. 2005; Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro . J Virol 79:7239–7247 [CrossRef]
    [Google Scholar]
  17. Liu J. J., Wong M. L., Chang T. J. 1998; The recombinant nucleocapsid protein of classical swine fever virus can act as a transcriptional regulator. Virus Res 53:75–80 [CrossRef]
    [Google Scholar]
  18. Merika M., Thanos D. 2001; Enhanceosomes. Curr Opin Genet Dev 11:205–208 [CrossRef]
    [Google Scholar]
  19. Meyers G., Ege A., Fetzer C., von Freyburg M., Elbers K., Carr V., Prentice H., Charleston B., Schurmann E. M. 2007; Bovine viral diarrhea virus: prevention of persistent fetal infection by a combination of two mutations affecting Erns RNase and Npro protease. J Virol 81:3327–3338 [CrossRef]
    [Google Scholar]
  20. Pichlmair A., Schulz O., Tan C. P., Naslund T. I., Liljestrom P., Weber F., Reis e Sousa C. 2006; RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314:997–1001 [CrossRef]
    [Google Scholar]
  21. Ruggli N., Tratschin J. D., Schweizer M., McCullough K. C., Hofmann M. A., Summerfield A. 2003; Classical swine fever virus interferes with cellular antiviral defense: evidence for a novel function of Npro . J Virol 77:7645–7654 [CrossRef]
    [Google Scholar]
  22. Ruggli N., Bird B. H., Liu L., Bauhofer O., Tratschin J. D., Hofmann M. A. 2005; Npro of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN- α / β induction. Virology 340:265–276 [CrossRef]
    [Google Scholar]
  23. Rumenapf T., Stark R., Heimann M., Thiel H. J. 1998; N-terminal protease of pestiviruses: identification of putative catalytic residues by site-directed mutagenesis. J Virol 72:2544–2547
    [Google Scholar]
  24. Schweizer M., Peterhans E. 2001; Noncytopathic bovine viral diarrhea virus inhibits double-stranded RNA-induced apoptosis and interferon synthesis. J Virol 75:4692–4698 [CrossRef]
    [Google Scholar]
  25. Schweizer M., Matzener P., Pfaffen G., Stalder H., Peterhans E. 2006; “Self” and “nonself” manipulation of interferon defense during persistent infection: bovine viral diarrhea virus resists alpha/beta interferon without blocking antiviral activity against unrelated viruses replicating in its host cells. J Virol 80:6926–6935 [CrossRef]
    [Google Scholar]
  26. Summerfield A., Hofmann M. A., McCullough K. C. 1998; Low density blood granulocytic cells induced during classical swine fever are targets for virus infection. Vet Immunol Immunopathol 63:289–301 [CrossRef]
    [Google Scholar]
  27. Summerfield A., Knoetig S. M., Tschudin R., McCullough K. C. 2000; Pathogenesis of granulocytopenia and bone marrow atrophy during classical swine fever involves apoptosis and necrosis of uninfected cells. Virology 272:50–60 [CrossRef]
    [Google Scholar]
  28. Summerfield A., Zingle K., Inumaru S., McCullough K. C. 2001; Induction of apoptosis in bone marrow neutrophil-lineage cells by classical swine fever virus. J Gen Virol 82:1309–1318
    [Google Scholar]
  29. van Oirschot J. T. 1988; Description of the virus infection. In Classical Swine Fever and Related Viral Infections pp 1–25 Edited by Liess B. Boston: Mantimus Nishoff;
    [Google Scholar]
  30. Yamashita K., Imaizumi T., Taima K., Fujita T., Ishikawa A., Yoshida H., Oyama C., Satoh K. 2005; Polyinosinic-polycytidylic acid induces the expression of GRO- α in BEAS-2B cells. Inflammation 29:17–21 [CrossRef]
    [Google Scholar]
  31. Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., Imaizumi T., Miyagishi M., Taira K., Akira S., Fujita T. 2004; The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737 [CrossRef]
    [Google Scholar]
  32. Yoneyama M., Kikuchi M., Matsumoto K., Imaizumi T., Miyagishi M., Taira K., Foy E., Loo Y. M., Gale M. Jr other authors 2005; Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175:2851–2858 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82934-0
Loading
/content/journal/jgv/10.1099/vir.0.82934-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error