1887

Abstract

(CSFV) is a member of the genus in the family . The N product of CSFV targets the host's innate immune response and can prevent the production of type I interferon (IFN). The mechanism by which CSFV orchestrates this inhibition was investigated and it is shown that, like the related pestivirus bovine viral diarrhea virus (BVDV), this involves the N protein targeting interferon regulatory factor-3 (IRF-3) for degradation by proteasomes and thus preventing IRF-3 from activating transcription from the IFN- promoter. Like BVDV, the steady-state levels of IRF-3 mRNA are not reduced markedly by CSFV infection or N overexpression. Moreover, IFN- stimulation of CSFV-infected cells induces the antiviral protein MxA, indicating that, as in BVDV-infected cells, the JAK/STAT pathway is not targeted for inhibition.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82934-0
2007-11-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/11/3002.html?itemId=/content/journal/jgv/10.1099/vir.0.82934-0&mimeType=html&fmt=ahah

References

  1. Andrejeva, J., Childs, K. S., Young, D. F., Carlos, T. S., Stock, N., Goodbourn, S. & Randall, R. E. ( 2004; ). The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-β promoter. Proc Natl Acad Sci U S A 101, 17264–17269.[CrossRef]
    [Google Scholar]
  2. Baigent, S. J., Zhang, G., Fray, M. D., Flick-Smith, H., Goodbourn, S. & McCauley, J. W. ( 2002; ). Inhibition of beta interferon transcription by noncytopathogenic bovine viral diarrhea virus is through an interferon regulatory factor-3-dependent mechanism. J Virol 76, 8979–8988.[CrossRef]
    [Google Scholar]
  3. Baigent, S. J., Goodbourn, S. & McCauley, J. W. ( 2004; ). Differential activation of interferon regulatory factors-3 and -7 by non-cytopathogenic and cytopathogenic bovine viral diarrhoea virus. Vet Immunol Immunopathol 100, 135–144.[CrossRef]
    [Google Scholar]
  4. Bauhofer, O., Summerfield, A., Sakoda, Y., Tratschin, J. D., Hofmann, M. A. & Ruggli, N. ( 2007; ). Npro of classical swine fever virus interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol 81, 3087–3096.[CrossRef]
    [Google Scholar]
  5. Charleston, B., Fray, M. D., Baigent, S., Carr, B. V. & Morrison, W. I. ( 2001; ). Establishment of persistent infection with non-cytopathic bovine viral diarrhoea virus in cattle is associated with a failure to induce type I interferon. J Gen Virol 82, 1893–1897.
    [Google Scholar]
  6. Enoch, T., Zinn, K. & Maniatis, T. ( 1986; ). Activation of the human β-interferon gene requires an interferon-inducible factor. Mol Cell Biol 6, 801–810.
    [Google Scholar]
  7. Gil, L. H., Ansari, I. H., Vassilev, V., Liang, D., Lai, V. C., Zhong, W., Hong, Z., Dubovi, E. J. & Donis, R. O. ( 2006; ). The amino-terminal domain of bovine viral diarrhea virus Npro protein is necessary for alpha/beta interferon antagonism. J Virol 80, 900–911.[CrossRef]
    [Google Scholar]
  8. Goodbourn, S., Didcock, L. J. & Randall, R. E. ( 2000; ). Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol 81, 2341–2364.
    [Google Scholar]
  9. Haller, O., Kochs, G. & Weber, F. ( 2006; ). The interferon response circuit: induction and suppression by pathogenic viruses. Virology 344, 119–130.[CrossRef]
    [Google Scholar]
  10. Hilton, L., Moganeradj, K., Zhang, G., Chen, Y. H., Randall, R. E., McCauley, J. W. & Goodbourn, S. ( 2006; ). The Npro product of bovine viral diarrhea virus inhibits DNA binding by interferon regulatory factor 3 and targets it for proteasomal degradation. J Virol 80, 11723–11732.[CrossRef]
    [Google Scholar]
  11. Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K. K. & other authors ( 2006; ). 5′-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997.[CrossRef]
    [Google Scholar]
  12. Horscroft, N., Bellows, D., Ansari, I., Lai, V. C., Dempsey, S., Liang, D., Donis, R., Zhong, W. & Hong, Z. ( 2005; ). Establishment of a subgenomic replicon for bovine viral diarrhea virus in Huh-7 cells and modulation of interferon-regulated factor 3-mediated antiviral response. J Virol 79, 2788–2796.[CrossRef]
    [Google Scholar]
  13. Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T. & other authors ( 2006; ). Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105.[CrossRef]
    [Google Scholar]
  14. Kawai, T. & Akira, S. ( 2006; ). Innate immune recognition of viral infection. Nat Immunol 7, 131–137.
    [Google Scholar]
  15. King, P. & Goodbourn, S. ( 1994; ). The β-interferon promoter responds to priming through multiple independent regulatory elements. J Biol Chem 269, 30609–30615.
    [Google Scholar]
  16. La Rocca, S. A., Herbert, R. J., Crooke, H., Drew, T. W., Wileman, T. E. & Powell, P. P. ( 2005; ). Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro. J Virol 79, 7239–7247.[CrossRef]
    [Google Scholar]
  17. Liu, J. J., Wong, M. L. & Chang, T. J. ( 1998; ). The recombinant nucleocapsid protein of classical swine fever virus can act as a transcriptional regulator. Virus Res 53, 75–80.[CrossRef]
    [Google Scholar]
  18. Merika, M. & Thanos, D. ( 2001; ). Enhanceosomes. Curr Opin Genet Dev 11, 205–208.[CrossRef]
    [Google Scholar]
  19. Meyers, G., Ege, A., Fetzer, C., von Freyburg, M., Elbers, K., Carr, V., Prentice, H., Charleston, B. & Schurmann, E. M. ( 2007; ). Bovine viral diarrhea virus: prevention of persistent fetal infection by a combination of two mutations affecting Erns RNase and Npro protease. J Virol 81, 3327–3338.[CrossRef]
    [Google Scholar]
  20. Pichlmair, A., Schulz, O., Tan, C. P., Naslund, T. I., Liljestrom, P., Weber, F. & Reis e Sousa, C. ( 2006; ). RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001.[CrossRef]
    [Google Scholar]
  21. Ruggli, N., Tratschin, J. D., Schweizer, M., McCullough, K. C., Hofmann, M. A. & Summerfield, A. ( 2003; ). Classical swine fever virus interferes with cellular antiviral defense: evidence for a novel function of Npro. J Virol 77, 7645–7654.[CrossRef]
    [Google Scholar]
  22. Ruggli, N., Bird, B. H., Liu, L., Bauhofer, O., Tratschin, J. D. & Hofmann, M. A. ( 2005; ). Npro of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN-α/β induction. Virology 340, 265–276.[CrossRef]
    [Google Scholar]
  23. Rumenapf, T., Stark, R., Heimann, M. & Thiel, H. J. ( 1998; ). N-terminal protease of pestiviruses: identification of putative catalytic residues by site-directed mutagenesis. J Virol 72, 2544–2547.
    [Google Scholar]
  24. Schweizer, M. & Peterhans, E. ( 2001; ). Noncytopathic bovine viral diarrhea virus inhibits double-stranded RNA-induced apoptosis and interferon synthesis. J Virol 75, 4692–4698.[CrossRef]
    [Google Scholar]
  25. Schweizer, M., Matzener, P., Pfaffen, G., Stalder, H. & Peterhans, E. ( 2006; ). “Self” and “nonself” manipulation of interferon defense during persistent infection: bovine viral diarrhea virus resists alpha/beta interferon without blocking antiviral activity against unrelated viruses replicating in its host cells. J Virol 80, 6926–6935.[CrossRef]
    [Google Scholar]
  26. Summerfield, A., Hofmann, M. A. & McCullough, K. C. ( 1998; ). Low density blood granulocytic cells induced during classical swine fever are targets for virus infection. Vet Immunol Immunopathol 63, 289–301.[CrossRef]
    [Google Scholar]
  27. Summerfield, A., Knoetig, S. M., Tschudin, R. & McCullough, K. C. ( 2000; ). Pathogenesis of granulocytopenia and bone marrow atrophy during classical swine fever involves apoptosis and necrosis of uninfected cells. Virology 272, 50–60.[CrossRef]
    [Google Scholar]
  28. Summerfield, A., Zingle, K., Inumaru, S. & McCullough, K. C. ( 2001; ). Induction of apoptosis in bone marrow neutrophil-lineage cells by classical swine fever virus. J Gen Virol 82, 1309–1318.
    [Google Scholar]
  29. van Oirschot, J. T. ( 1988; ). Description of the virus infection. In Classical Swine Fever and Related Viral Infections, pp. 1–25. Edited by B. Liess. Boston: Mantimus Nishoff.
  30. Yamashita, K., Imaizumi, T., Taima, K., Fujita, T., Ishikawa, A., Yoshida, H., Oyama, C. & Satoh, K. ( 2005; ). Polyinosinic-polycytidylic acid induces the expression of GRO-α in BEAS-2B cells. Inflammation 29, 17–21.[CrossRef]
    [Google Scholar]
  31. Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S. & Fujita, T. ( 2004; ). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5, 730–737.[CrossRef]
    [Google Scholar]
  32. Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., Taira, K., Foy, E., Loo, Y. M., Gale, M., Jr & other authors ( 2005; ). Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175, 2851–2858.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82934-0
Loading
/content/journal/jgv/10.1099/vir.0.82934-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error