1887

Abstract

The membrane (M) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is a major glycoprotein with multiple biological functions. In this study, we found that memory T cells against M protein were persistent in recovered SARS patients by detecting gamma interferon (IFN-) production using ELISA and ELISpot assays. Flow cytometric analysis showed that both CD4 and CD8 T cells were involved in cellular responses to SARS-CoV M antigen. Furthermore, memory CD8 T cells displayed an effector memory cell phenotype expressing CD45RO CCR7 CD62L. In contrast, the majority of IFN- CD4 T cells were central memory cells with the expression of CD45RO CCR7 CD62L. The epitope screening from 30 synthetic overlapping peptides that cover the entire SARS-CoV M protein identified four human T-cell immunodominant peptides, p21-44, p65-91, p117-140 and p200-220. All four immunodominant peptides could elicit cellular immunity with a predominance of CD8 T-cell response. This data may have important implication for developing SARS vaccines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82839-0
2007-10-01
2021-07-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/10/2740.html?itemId=/content/journal/jgv/10.1099/vir.0.82839-0&mimeType=html&fmt=ahah

References

  1. Abbas A. K., Murphy K. M., Sher A. 1996; Functional diversity of helper T lymphocytes. Nature 383:787–793 [CrossRef]
    [Google Scholar]
  2. Bisht H., Roberts A., Vogel L., Bukreyev A., Collins P. L., Murphy B. R., Subbarao K., Moss B. 2004; Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci U S A 101:6641–6646 [CrossRef]
    [Google Scholar]
  3. Bukreyev A., Lamirande E. W., Buchholz U. J., Vogel L. N., Vogel L. N., Elkins W. R., StClaire M., Murphy B. R., Subbarao K., Collins P. L. 2004; Mucosal immunization of African green monkeys ( Cercopithecus aethiops ) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet 363:2122–2127 [CrossRef]
    [Google Scholar]
  4. Champagne P., Ogg G. S., King A. S., Knabenhans C., Ellefsen K., Nobile M., Appay V., Rizzardi G. P., Fleury S. other authors 2001; Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410:106–111 [CrossRef]
    [Google Scholar]
  5. Chen H., Hou J., Jiang X., Ma S., Meng M., Wang B., Zhang M., Zhang M., Tang X. other authors 2005; Response of memory CD8+ T cells to severe acute respiratory syndrome (SARS) coronavirus in recovered SARS patients and healthy individuals. J Immunol 175:591–598 [CrossRef]
    [Google Scholar]
  6. Drosten C., Gunther S., Preiser W., van der Werf S., Brodt H. R., Becker S., Rabenau H., Panning M., Kolesnikova L. other authors 2003; Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976 [CrossRef]
    [Google Scholar]
  7. Gao W., Tamin A., Soloff A., D'Aluto L., Nwanegbo E., Robbins P. D., Bellini W. J., Barratt-Boyes S., Gambotto A. 2003; Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet 362:1895–1896 [CrossRef]
    [Google Scholar]
  8. He Y., Zhou Y., Siddiqui P., Niu J., Jiang S. 2005; Identification of immunodominant epitopes on the membrane protein of the severe acute respiratory syndrome-associated coronavirus. J Clin Microbiol 43:3718–3726 [CrossRef]
    [Google Scholar]
  9. Jin H., Xiao C., Chen Z., Chen Z., Kang Y., Ma Y., Zhu K., Xie Q., Tu Y. other authors 2005; Induction of Th1 type response by DNA vaccinations with N, M, and E genes against SARS-CoV in mice. Biochem Biophys Res Commun 328:979–986 [CrossRef]
    [Google Scholar]
  10. Ksiazek T. G., Erdman D., Goldsmith C. S., Zaki S. R., Peret T., Emery S., Tong S., Urbani C., Comer J. A. other authors 2003; A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966 [CrossRef]
    [Google Scholar]
  11. Li G., Chen X., Xu A. 2003; Profile of specific antibodies to the SARS-associated corona virus. N Engl J Med 349:508–509 [CrossRef]
    [Google Scholar]
  12. Liu X., Shi Y., Li P., Li L., Yi Y., Ma Q., Cao C. 2004; Profile of antibodies to the nucleocapsid protein of the severe acute respiratory syndrome (SARS)-associated coronavirus in probable SARS patients. Clin Diagn Lab Immunol 11:227–228
    [Google Scholar]
  13. Mallard E., Vernel-Pauillac F., Velu T., Lehmann F., Abastado J. P., Salcedo M., Bercovici N. 2004; IL-2 production by virus- and tumor-specific human CD8 T cells is determined by their fine specificity. J Immunol 172:3963–3970 [CrossRef]
    [Google Scholar]
  14. Peng H., Yang L. T., Li J., Lu Z. Q., Wang L. Y., Koup R. A., Bailer R. T., Wu C. Y. 2006a; Human memory T cell responses to SARS-CoV E protein. Microbes Infect 8:2424–2431 [CrossRef]
    [Google Scholar]
  15. Peng H., Yang L. T., Wang L. Y., Li J., Huang J., Lu Z. Q., Koup R. A., Bailer R. T., Wu C. Y. 2006b; Long-lived memory T lymphocyte responses against SARS coronavirus nucleocapsid protein in SARS-recovered patients. Virology 351:466–475 [CrossRef]
    [Google Scholar]
  16. Seder R. A., Ahmed R. 2003; Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat Immunol 4:835–842 [CrossRef]
    [Google Scholar]
  17. Soo Y. O., Cheng Y., Wong R., Hui D. S., Lee C. K., Tsang K. K., Ng M. H., Chan P., Cheng G., Sung J. J. 2004; Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect 10:676–678 [CrossRef]
    [Google Scholar]
  18. Subbarao K., McAuliffe J., Vogel L., Fahle G., Fischer S., Tatti K., Packard M., Shieh W. J., Zaki S., Murphy B. 2004; Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J Virol 78:3572–3577 [CrossRef]
    [Google Scholar]
  19. Takasuka N., Fujii H., Takahashi Y., Kasai M., Morikawa S., Itamura S., Ishii K., Sakaguchi M., Ohnishi K. other authors 2004; A subcutaneously injected UV-inactivated SARS coronavirus vaccine elicits systemic humoral immunity in mice. Int Immunol 16:1423–1430 [CrossRef]
    [Google Scholar]
  20. Wang B., Chen H. B., Jiang X. D., Zhang M., Wan T., Li N., Zhou X., Wu Y., Yang F. other authors 2004a; Identification of an HLA-A*0201-restricted CD8+ T-cell epitope SSp-1 of SARS-CoV spike protein. Blood 104:200–206 [CrossRef]
    [Google Scholar]
  21. Wang Y. D., Sin W. Y., Xu G. B., Yu J., Meng L., Yang R. F., Lai S. T., Guo Z. H., Xie Y. & other authors (2004b). T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus spike protein elicit a specific T-cell immune response in patients who recovered from SARS. J Virol 78:5612–5618 [CrossRef]
    [Google Scholar]
  22. Wang Z., Yuan Z. H., Matsumoto M., Hengge U. R., Chang Y. F. 2005; Immune responses with DNA vaccines encoded different gene fragments of severe acute respiratory syndrome coronavirus in BALB/c mice. Biochem Biophys Res Commun 327:130–135 [CrossRef]
    [Google Scholar]
  23. Wherry E. J., Teichgräber V., Becker T. C., Masopust D., Kaech S. M., Antia R., von Andrian U. H., Ahmed R. 2003; Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 4:225–234
    [Google Scholar]
  24. Wills M. R., Carmichael A. J., Weekes M. P., Mynard K., Okecha G., Hicks R., Siaaona J. G. 1999; Human virus-specific CD8+ CTL clones revert from CD45ROhigh to CD45RAhigh in vivo: CD45RAhigh CD8+ T cells comprise both naïve and memory cells. J Immunol 162:7080–7087
    [Google Scholar]
  25. Wu C. Y., Kirman J. R., Rotte M. J., Davey D. F., Perfetto S. P., Rhee E. G., Freidag B. L., Hill B. J., Douek D. C., Seder R. A. 2002; Distinct lineages of TH1 cells have differential capacities for memory cell generation in vivo. Nat Immunol 3:852–858 [CrossRef]
    [Google Scholar]
  26. Yang Z. Y., Kong W. P., Huang Y., Roberts A., Murphy B. R., Subbarao K., Nabel G. J. 2004; A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428:561–564 [CrossRef]
    [Google Scholar]
  27. Yang L. T., Peng H., Zhu Z. L., Li G., Huang Z. T., Zhao Z. X., Koup R. A., Bailer R. T., Wu C. Y. 2006; Long-lived effector/central memory T-cell responses to severe acute respiratory syndrome coronavirus (SARS-CoV) S antigen in recovered SARS patients. Clin Immunol 120:171–178 [CrossRef]
    [Google Scholar]
  28. Zhi Y., Kobinger G. P., Jordan H., Suchma K., Weiss S. R., Shen H., Schumer G., Gao G., Boyer J. L. other authors 2005; Identification of murine CD8 T cell epitopes in codon-optimized SARS-associated coronavirus spike protein. Virology 335:34–45 [CrossRef]
    [Google Scholar]
  29. Zimmerli S. C., Harari A., Cellerai C., Vallelian F., Bart P. A., Pantaleo G. 2005; HIV-1-specific IFN- γ /IL-2-secreting CD8 T cells support CD4-independent proliferation of HIV-1-specific CD8 T cells. Proc Natl Acad Sci U S A 102:7239–7244 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82839-0
Loading
/content/journal/jgv/10.1099/vir.0.82839-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error