1887

Abstract

The pentanucleotide (PN) sequence 5′-CACAG-3′ at the top of the 3′ stem–loop structure of the flavivirus genome is well conserved in the arthropod-borne viruses but is more variable in flaviviruses with no known vector. In this study, the sequence requirements of the PN motif for yellow fever virus 17D (YFV) replication were determined. In general, individual mutations at either the second, third or fourth positions were tolerated and resulted in replication-competent virus. Mutations at the fifth position were lethal. Base pairing of the nucleotide at the first position of the PN motif and a nucleotide four positions downstream of the PN (ninth position) was a major determinant for replication. Despite the fact that the majority of the PN mutants were able to replicate efficiently, they were outcompeted by parental YFV-17D virus following repeated passages in double-infected cell cultures. Surprisingly, some of the virus mutants at the first and/or the ninth position that maintained the possibility of forming a base pair were found to have a similar fitness to YFV-17D under these conditions. Overall, these experiments suggest that YFV is less dependent on sequence conservation of the PN motif for replication in animal cells than West Nile virus. However, in animal cell culture, YFV has a preference for the wt CACAG PN sequence. The molecular mechanisms behind this preference remain to be elucidated.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82811-0
2007-06-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/6/1738.html?itemId=/content/journal/jgv/10.1099/vir.0.82811-0&mimeType=html&fmt=ahah

References

  1. Alvarez, D. E., Ezcurra, A. L. D., Fucito, S. & Gamarnik, A. V. ( 2005; ). Role of RNA structures present at the 3′ UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology 339, 200–212.[CrossRef]
    [Google Scholar]
  2. Ausubel, F. M., Brent, R., Kingstone, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 2000; ). Current Protocols in Molecular Biology. New York: Wiley.
  3. Blackwell, J. L. & Brinton, M. A. ( 1997; ). Translation elongation factor-1α interacts with the 3′ stem–loop region of West Nile virus genomic RNA. J Virol 71, 6433–6444.
    [Google Scholar]
  4. Bredenbeek, P. J., Kooi, E. A., Lindenbach, B., Huijkman, N., Rice, C. M. & Spaan, W. J. M. ( 2003; ). A stable full-length yellow fever virus cDNA clone and the role of conserved RNA elements in flavivirus replication. J Gen Virol 84, 1261–1268.[CrossRef]
    [Google Scholar]
  5. Brinton, M. A., Fernandez, A. V. & Dispoto, J. H. ( 1986; ). The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology 153, 113–121.[CrossRef]
    [Google Scholar]
  6. Charlier, N., Leyssen, P., Pleij, C. W. A., Lemey, P., Billoir, F., Van Laethem, K., Vandamme, A. M., De Clercq, E., de Lamballerie, X. & Neyts, J. ( 2002; ). Complete genome sequence of Montana Myotis leukoencephalitis virus, phylogenetic analysis and comparative study of the 3′ untranslated region of flaviviruses with no known vector. J Gen Virol 83, 1875–1885.
    [Google Scholar]
  7. Charlier, N., Molenkamp, R., Leyssen, P., Paeshuyse, J., Drosten, C., Panning, M., De Clercq, E., Bredenbeek, P. J. & Neyts, J. ( 2004; ). Exchanging the yellow fever virus envelope proteins with Modoc virus prM and E proteins results in a chimeric virus that is neuroinvasive in SCID mice. J Virol 78, 7418–7426.[CrossRef]
    [Google Scholar]
  8. Chen, C. J., Kuo, M. D., Chien, L. J., Hsu, S. L., Wang, Y. M. & Lin, J. H. ( 1997; ). RNA–protein interactions: involvement of NS3, NS5, and 3′ noncoding regions of Japanese encephalitis virus genomic RNA. J Virol 71, 3466–3473.
    [Google Scholar]
  9. Chiu, W. W., Kinney, R. M. & Dreher, T. W. ( 2005; ). Control of translation by the 5′- and 3′-terminal regions of the dengue virus genome. J Virol 79, 8303–8315.[CrossRef]
    [Google Scholar]
  10. Cook, S. & Holmes, E. C. ( 2006; ). A multigene analysis of the phylogenetic relationships among the flaviviruses (family: Flaviviridae) and the evolution of vector transmission. Arch Virol 151, 309–325.[CrossRef]
    [Google Scholar]
  11. Elghonemy, S., Davis, W. G. & Brinton, M. A. ( 2005; ). The majority of the nucleotides in the top loop of the genomic 3′ terminal stem loop structure are cis-acting in a West Nile virus infectious clone. Virology 331, 238–246.[CrossRef]
    [Google Scholar]
  12. Gritsun, T. S., Desai, A. & Gould, E. A. ( 2001; ). The degree of attenuation of tick-borne encephalitis virus depends on the cumulative effects of point mutations. J Gen Virol 82, 1667–1675.
    [Google Scholar]
  13. Hahn, C. S., Hahn, Y. S., Rice, C. M., Lee, E., Dalgarno, L., Strauss, E. G. & Strauss, J. H. ( 1987; ). Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol 198, 33–41.[CrossRef]
    [Google Scholar]
  14. Holden, K. L. & Harris, E. ( 2004; ). Enhancement of dengue virus translation: role of the 3′ untranslated region and the terminal 3′ stem–loop domain. Virology 329, 119–133.[CrossRef]
    [Google Scholar]
  15. Holden, K. L., Stein, D. A., Pierson, T. C., Ahmed, A. A., Clyde, K., Iversen, P. L. & Harris, E. ( 2006; ). Inhibition of dengue virus translation and RNA synthesis by a morpholino oligomer targeted to the top of the terminal 3′ stem–loop structure. Virology 344, 439–452.[CrossRef]
    [Google Scholar]
  16. Inoue, H., Nojima, H. & Okayama, H. ( 1990; ). High-efficiency transformation of Escherichia coli with plasmids. Gene 96, 23–28.[CrossRef]
    [Google Scholar]
  17. Jones, C. T., Patkar, C. G. & Kuhn, R. J. ( 2005; ). Construction and applications of yellow fever virus replicons. Virology 331, 247–259.[CrossRef]
    [Google Scholar]
  18. Khromykh, A. A. & Westaway, E. G. ( 1997; ). Subgenomic replicons of the flavivirus Kunjin: construction and applications. J Virol 71, 1497–1505.
    [Google Scholar]
  19. Kim, S. M. & Jeong, Y. S. ( 2006; ). Polypyrimidine tract-binding protein interacts with the 3′ stem–loop region of Japanese encephalitis virus negative-strand RNA. Virus Res 115, 131–140.[CrossRef]
    [Google Scholar]
  20. Kuno, G., Chang, G. J. J., Tsuchiya, K. R., Karabatsos, N. & Cropp, C. B. ( 1998; ). Phylogeny of the genus Flavivirus. J Virol 72, 73–83.
    [Google Scholar]
  21. Lawrie, C. H., Uzcategui, N. Y., Armesto, M., Bell-Sakyi, L. & Gould, E. A. ( 2004; ). Susceptibility of mosquito and tick cell lines to infection with various flaviviruses. Med Vet Entomol 18, 268–274.[CrossRef]
    [Google Scholar]
  22. Lindenbach, B. D. & Rice, C. M. ( 1997; ). trans-Complementation of yellow fever virus NS1 reveals a role in early RNA replication. J Virol 71, 9608–9617.
    [Google Scholar]
  23. Lindenbach, B. & Rice, C. M. ( 2001; ). Flaviviridae: the viruses and their replication. In Fields Virology, 4th edn, pp. 991–1041. Edited by D. M. Knipe & P. M. Howley. Philadelphia: Lippincott, Williams, Wilkins.
  24. Lo, M. K., Tilgner, M., Bernard, K. A. & Shi, P. Y. ( 2003; ). Functional analysis of mosquito-borne flavivirus conserved sequence elements within 3′ untranslated region of West Nile virus by use of a reporting replicon that differentiates between viral translation and RNA replication. J Virol 77, 10004–10014.[CrossRef]
    [Google Scholar]
  25. Markoff, L. ( 2003; ). 5′- and 3′-noncoding regions of flavivirus RNA. In The Flaviviruses; Structure, Replication, and Evolution, pp. 177–228. Edited by T. J. Chambers & T. P. Monath. Elsevier Academic Press.
  26. Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. ( 1999; ). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288, 911–940.[CrossRef]
    [Google Scholar]
  27. Molenkamp, R., Kooi, E. A., Lucassen, M. A., Greve, S., Thijssen, J. C. P., Spaan, W. J. M. & Bredenbeek, P. J. ( 2003; ). Yellow fever virus replicons as an expression system for hepatitis C virus structural proteins. J Virol 77, 1644–1648.[CrossRef]
    [Google Scholar]
  28. Nomaguchi, M., Teramoto, T., Yu, L., Markoff, L. & Padmanabhan, R. ( 2004; ). Requirements for West Nile virus (–)- and (+)-strand subgenomic RNA synthesis in vitro by the viral RNA-dependent RNA polymerase expressed in Escherichia coli. J Biol Chem 279, 12141–12151.[CrossRef]
    [Google Scholar]
  29. Nova-Ocampo, M., Villegas-Sepuveda, N. & del Angel, R. M. ( 2002; ). Translation elongation factor-1α, La, and PTB interact with the 3′ untranslated region of dengue 4 virus RNA. Virology 295, 337–347.[CrossRef]
    [Google Scholar]
  30. Sambrook, J., Fritsch, T. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  31. Shi, P. Y., Tilgner, M. & Lo, M. K. ( 2002; ). Construction and characterization of subgenomic replicons of New York strain of West Nile virus. Virology 296, 219–233.[CrossRef]
    [Google Scholar]
  32. Ta, M. & Vrati, S. ( 2000; ). Mov34 protein from mouse brain interacts with the 3′ noncoding region of Japanese encephalitis virus. J Virol 74, 5108–5115.[CrossRef]
    [Google Scholar]
  33. Tajima, S., Takasaki, T., Matsuno, S., Nakayama, M. & Kurane, I. ( 2005; ). Genetic characterization of Yokose virus, a flavivirus isolated from the bat in Japan. Virology 332, 38–44.[CrossRef]
    [Google Scholar]
  34. Thiel, H.-J., Collett, M. S., Gould, E. A., Heinz, F. X., Houghton, M., Meyers, G., Purcell, R. H. & Rice, C. M. ( 2005; ). Family Flaviviridae. In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses, pp. 981–998. Edited by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger & L. A. Ball. San Diego: Elsevier Academic Press.
  35. Tilgner, M., Deas, T. S. & Shi, P. Y. ( 2005; ). The flavivirus-conserved penta-nucleotide in the 3′ stem–loop of the West Nile virus genome requires a specific sequence and structure for RNA synthesis, but not for viral translation. Virology 331, 375–386.[CrossRef]
    [Google Scholar]
  36. van Dinten, L. C., Denboon, J. A., Wassenaar, A. L. M., Spaan, W. J. M. & Snijder, E. J. ( 1997; ). An infectious arterivirus cDNA clone: identification of a replicase point mutation that abolishes discontinuous mRNA transcription. Proc Natl Acad Sci U S A 94, 991–996.[CrossRef]
    [Google Scholar]
  37. Wengler, G. & Castle, E. ( 1986; ). Analysis of structural properties which possibly are characteristic for the 3′-terminal sequence of the genome RNA of flaviviruses. J Gen Virol 67, 1183–1188.[CrossRef]
    [Google Scholar]
  38. Zuker, M. ( 2003; ). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82811-0
Loading
/content/journal/jgv/10.1099/vir.0.82811-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error