1887

Abstract

Hepatitis C virus (HCV) is an important pathogen causing both acute and chronic infections in humans. The HCV polyprotein is synthesized by cap-independent translation initiation after ribosome binding to the highly structured internal ribosome entry site (IRES). The HCV IRES has been shown to have a low requirement for translation initiation factors and the ability to bind directly to the 40S ribosomal subunit. A novel yeast bicistronic reporter system, suitable for sensitive and accurate analysis of IRES activity, has been developed. It employs signal amplification based on the Gal4p transcription factor-mediated activation of a variety of secondary reporter genes. The system has a broad dynamic range and, depending on the nature of the particular secondary reporter, can be used both for precise measurements of IRES activity and for selection and screening for novel IRES variants and IRES -acting factors. By using this novel bicistronic system, it was shown that the HCV IRES is functional in yeast cells. Mutational analysis of the IRES loop IV and the adjacent region revealed that, in yeast, as in mammalian cells, translation initiates preferentially at the authentic AUG codon and that disruption of the HCV IRES loop IV abrogates its function, whilst minor positional changes or substitutions of the initiation codon within loop IV are largely tolerated. These findings bring more general insights to translation initiation, but also open the door for utilization of yeast and its sophisticated genetics for searching for new antiviral drugs and HCV IRES -acting proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82782-0
2007-07-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/7/1992.html?itemId=/content/journal/jgv/10.1099/vir.0.82782-0&mimeType=html&fmt=ahah

References

  1. Altmann, M., Blum, S., Pelletier, J., Sonenberg, N., Wilson, T. M. & Trachsel, H. ( 1990; ). Translation initiation factor-dependent extracts from Saccharomyces cerevisiae. Biochim Biophys Acta 1050, 155–159.[CrossRef]
    [Google Scholar]
  2. Buratti, E., Tisminetzky, S., Zotti, M. & Baralle, F. E. ( 1998; ). Functional analysis of the interaction between HCV 5′UTR and putative subunits of eukaryotic translation initiation factor eIF3. Nucleic Acids Res 26, 3179–3187.[CrossRef]
    [Google Scholar]
  3. Collier, A. J., Gallego, J., Klinck, R., Cole, P. T., Harris, S. J., Harrison, G. P., Aboul-Ela, F., Varani, G. & Walker, S. ( 2002; ). A conserved RNA structure within the HCV IRES eIF3-binding site. Nat Struct Biol 9, 375–380.
    [Google Scholar]
  4. Csank, C., Costanzo, M. C., Hirschman, J., Hodges, P., Kranz, J. E., Mangan, M., O'Neill, K., Robertson, L. S., Skrzypek, M. S. & other authors ( 2002; ). Three yeast proteome databases: YPD, PombePD, and CalPD (MycoPathPD). Methods Enzymol 350, 347–373.
    [Google Scholar]
  5. Dorokhov, Y. L., Skulachev, M. V., Ivanov, P. A., Zvereva, S. D., Tjulkina, L. G., Merits, A., Gleba, Y. Y., Hohn, T. & Atabekov, J. G. ( 2002; ). Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry. Proc Natl Acad Sci U S A 99, 5301–5306.[CrossRef]
    [Google Scholar]
  6. Fletcher, S. P., Ali, I. K., Kaminski, A., Digard, P. & Jackson, R. J. ( 2002; ). The influence of viral coding sequences on pestivirus IRES activity reveals further parallels with translation initiation in prokaryotes. RNA 8, 1558–1571.
    [Google Scholar]
  7. Fukushi, S., Okada, M., Stahl, J., Kageyama, T., Hoshino, F. B. & Katayama, K. ( 2001; ). Ribosomal protein S5 interacts with the internal ribosomal entry site of hepatitis C virus. J Biol Chem 276, 20824–20826.[CrossRef]
    [Google Scholar]
  8. Gietz, R. D. & Woods, R. A. ( 2002; ). Transformation of yeast by the Liac/ss carrier DNA/PEG method. Methods Enzymol 350, 87–96.
    [Google Scholar]
  9. Hecht, K., Bailey, J. E. & Minas, W. ( 2002; ). Polycistronic gene expression in yeast versus cryptic promoter elements. FEMS Yeast Res 2, 215–224.[CrossRef]
    [Google Scholar]
  10. Hellen, C. U. & Sarnow, P. ( 2001; ). Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15, 1593–1612.[CrossRef]
    [Google Scholar]
  11. Hershey, J. W. B. & Merrick, W. C. ( 2000; ). Pathway and mechanism of initiation of protein synthesis. In Translational Control of Gene Expression, pp. 33–88. Edited by N. Sonenberg, J. W. B. Hershey & M. B. Mathews. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  12. Honda, M., Brown, E. A. & Lemon, S. M. ( 1996; ). Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA 2, 955–968.
    [Google Scholar]
  13. Hwang, L. H., Hsieh, C. L., Yen, A., Chung, Y. L. & Chen, D. S. ( 1998; ). Involvement of the 5′ proximal coding sequences of hepatitis C virus with internal initiation of viral translation. Biochem Biophys Res Commun 252, 455–460.[CrossRef]
    [Google Scholar]
  14. Iizuka, N. & Sarnow, P. ( 1997; ). Translation-competent extracts from Saccharomyces cerevisiae: effects of L-A RNA, 5′ cap, and 3′ poly(A) tail on translational efficiency of mRNAs. Methods 11, 353–360.[CrossRef]
    [Google Scholar]
  15. Iizuka, N., Najita, L., Franzusoff, A. & Sarnow, P. ( 1994; ). Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol Cell Biol 14, 7322–7330.
    [Google Scholar]
  16. Jackson, R. J. ( 2000; ). Comparative view of initiation site selection mechanisms. In Translational Control of Gene Expression, pp. 127–183. Edited by N. Sonenberg, J. W. B. Hershey & M. B. Mathews. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  17. James, P., Halladay, J. & Craig, E. A. ( 1996; ). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436.
    [Google Scholar]
  18. Kieft, J. S., Zhou, K., Jubin, R. & Doudna, J. A. ( 2001; ). Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA 7, 194–206.[CrossRef]
    [Google Scholar]
  19. Kolupaeva, V. G., Pestova, T. V. & Hellen, C. U. ( 2000; ). An enzymatic footprinting analysis of the interaction of 40S ribosomal subunits with the internal ribosomal entry site of hepatitis C virus. J Virol 74, 6242–6250.[CrossRef]
    [Google Scholar]
  20. Lancaster, A. M., Jan, E. & Sarnow, P. ( 2006; ). Initiation factor-independent translation mediated by the hepatitis C virus internal ribosome entry site. RNA 12, 894–902.[CrossRef]
    [Google Scholar]
  21. Lohr, D., Venkov, P. & Zlatanova, J. ( 1995; ). Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB J 9, 777–787.
    [Google Scholar]
  22. Lytle, J. R., Wu, L. & Robertson, H. D. ( 2001; ). The ribosome binding site of hepatitis C virus mRNA. J Virol 75, 7629–7636.[CrossRef]
    [Google Scholar]
  23. Mokrejs, M., Vopalensky, V., Kolenaty, O., Masek, T., Feketova, Z., Sekyrova, P., Skaloudova, B., Kriz, V. & Pospisek, M. ( 2006; ). IRESite: database of experimentally verified IRES structures (www.iresite.org). Nucleic Acids Res 34, D125–D130.[CrossRef]
    [Google Scholar]
  24. Otto, G. A., Lukavsky, P. J., Lancaster, A. M., Sarnow, P. & Puglisi, J. D. ( 2002; ). Ribosomal proteins mediate the hepatitis C virus IRES-HeLa 40S interaction. RNA 8, 913–923.[CrossRef]
    [Google Scholar]
  25. Paz, I., Abramovitz, L. & Choder, M. ( 1999; ). Starved Saccharomyces cerevisiae cells have the capacity to support internal initiation of translation. J Biol Chem 274, 21741–21745.[CrossRef]
    [Google Scholar]
  26. Rajkowitsch, L., Vilela, C., Berthelot, K., Ramirez, C. V. & McCarthy, J. E. ( 2004; ). Reinitiation and recycling are distinct processes occurring downstream of translation termination in yeast. J Mol Biol 335, 71–85.[CrossRef]
    [Google Scholar]
  27. Reynolds, J. E., Kaminski, A., Kettinen, H. J., Grace, K., Clarke, B. E., Carroll, A. R., Rowlands, D. J. & Jackson, R. J. ( 1995; ). Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J 14, 6010–6020.
    [Google Scholar]
  28. Reynolds, J. E., Kaminski, A., Carroll, A. R., Clarke, B. E., Rowlands, D. J. & Jackson, R. J. ( 1996; ). Internal initiation of translation of hepatitis C virus RNA: the ribosome entry site is at the authentic initiation codon. RNA 2, 867–878.
    [Google Scholar]
  29. Rijnbrand, R., Bredenbeek, P., van der Straaten, T., Whetter, L., Inchauspe, G., Lemon, S. & Spaan, W. ( 1995; ). Almost the entire 5′ non-translated region of hepatitis C virus is required for cap-independent translation. FEBS Lett 365, 115–119.[CrossRef]
    [Google Scholar]
  30. Rijnbrand, R. C., Abbink, T. E., Haasnoot, P. C., Spaan, W. J. & Bredenbeek, P. J. ( 1996; ). The influence of AUG codons in the hepatitis C virus 5′ nontranslated region on translation and mapping of the translation initiation window. Virology 226, 47–56.[CrossRef]
    [Google Scholar]
  31. Rijnbrand, R., Bredenbeek, P. J., Haasnoot, P. C., Kieft, J. S., Spaan, W. J. & Lemon, S. M. ( 2001; ). The influence of downstream protein-coding sequence on internal ribosome entry on hepatitis C virus and other flavivirus RNAs. RNA 7, 585–597.[CrossRef]
    [Google Scholar]
  32. Robinson, K. A. & Lopes, J. M. ( 2000; ). The promoter of the yeast INO4 regulatory gene: a model of the simplest yeast promoter. J Bacteriol 182, 2746–2752.[CrossRef]
    [Google Scholar]
  33. Rosenfeld, A. B. & Racaniello, V. R. ( 2005; ). Hepatitis C virus internal ribosome entry site-dependent translation in Saccharomyces cerevisiae is independent of polypyrimidine tract-binding protein, poly(rC)-binding protein 2, and La protein. J Virol 79, 10126–10137.[CrossRef]
    [Google Scholar]
  34. Sizova, D. V., Kolupaeva, V. G., Pestova, T. V., Shatsky, I. N. & Hellen, C. U. ( 1998; ). Specific interaction of eukaryotic translation initiation factor 3 with the 5′ nontranslated regions of hepatitis C virus and classical swine fever virus RNAs. J Virol 72, 4775–4782.
    [Google Scholar]
  35. Spahn, C. M., Kieft, J. S., Grassucci, R. A., Penczek, P. A., Zhou, K., Doudna, J. A. & Frank, J. ( 2001; ). Hepatitis C virus IRES RNA-induced changes in the conformation of the 40S ribosomal subunit. Science 291, 1959–1962.[CrossRef]
    [Google Scholar]
  36. Thompson, S. R., Gulyas, K. D. & Sarnow, P. ( 2001; ). Internal initiation in Saccharomyces cerevisiae mediated by an initiator tRNA/eIF2-independent internal ribosome entry site element. Proc Natl Acad Sci U S A 98, 12972–12977.[CrossRef]
    [Google Scholar]
  37. Tsukiyama-Kohara, K., Iizuka, N., Kohara, M. & Nomoto, A. ( 1992; ). Internal ribosome entry site within hepatitis C virus RNA. J Virol 66, 1476–1483.
    [Google Scholar]
  38. Wang, T. H., Rijnbrand, R. C. & Lemon, S. M. ( 2000; ). Core protein-coding sequence, but not core protein, modulates the efficiency of cap-independent translation directed by the internal ribosome entry site of hepatitis C virus. J Virol 74, 11347–11358.[CrossRef]
    [Google Scholar]
  39. Wool, I. G., Chan, Y.-L. & Gluck, A. ( 1996; ). Mammalian ribosomes: the structure and the evolution of the proteins. In Translational Control, pp. 685–732. Edited by J. W. B. Hershey, M. B. Mathews & N. Sonenberg. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82782-0
Loading
/content/journal/jgv/10.1099/vir.0.82782-0
Loading

Data & Media loading...

Supplements

Complete sequence of pFGAL4 vector [ .txt file]

TEXT

Complete intercistronic sequences of pFGAL4, pFGAL4h and the vectors from pFGAL4 : :  library presented in Fig. 1(b) in the paper [ .txt file]

TEXT

[ Single PDF file for Supplementary Tables S1 and S2] (73 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error