1887

Abstract

Many novel vaccine strategies rely on recombinant viral vectors for antigen delivery, and adenovirus vectors have emerged among the most potent of these. In this report, we have compared the immune response induced through priming with adenovirus vector-encoded full-length viral protein to that elicited with an adenovirus-encoded minimal epitope covalently linked to -microglobulin. We demonstrate that the -microglobulin-linked epitope induced an accelerated and augmented CD8 T-cell response. Furthermore, the immunity conferred by vaccination with -microglobulin-linked lymphocytic choriomeningitis virus (LCMV)-derived epitopes was long-lived and protective. Notably, in contrast to full-length protein, the response elicited with the -microglobulin-linked LCMV-derived epitope was CD4 T-cell independent. Furthermore, virus-specific CD8 T cells primed in the absence of CD4 T-cell help were sustained in the long term and able to expand and control a secondary challenge with LCMV. Our results demonstrate that modifications to the antigen used in adenovirus vaccines may be used to improve the induced T-cell response. Such a strategy for CD4 T-cell-independent immunity from adenovirus vectors offers prospects for vaccination against opportunistic pathogens in AIDS patients and possibly immunotherapy in chronic virus infections.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82727-0
2007-06-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/6/1708.html?itemId=/content/journal/jgv/10.1099/vir.0.82727-0&mimeType=html&fmt=ahah

References

  1. Barber, D. L., Wherry, E. J., Masopust, D., Zhu, B., Allison, J. P., Sharpe, A. H., Freeman, G. J. & Ahmed, R. ( 2006; ). Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687.[CrossRef]
    [Google Scholar]
  2. Bartholdy, C., Stryhn, A., Hansen, N. J., Buus, S. & Thomsen, A. R. ( 2003; ). Incomplete effector/memory differentiation of antigen-primed CD8+ T cells in gene gun DNA-vaccinated mice. Eur J Immunol 33, 1941–1948.[CrossRef]
    [Google Scholar]
  3. Bartholdy, C., Olszewska, W., Stryhn, A., Thomsen, A. R. & Openshaw, P. J. ( 2004a; ). Gene-gun DNA vaccination aggravates respiratory syncytial virus-induced pneumonitis. J Gen Virol 85, 3017–3026.[CrossRef]
    [Google Scholar]
  4. Bartholdy, C., Stryhn, A., Christensen, J. P. & Thomsen, A. R. ( 2004b; ). Single-epitope DNA vaccination prevents exhaustion and facilitates a broad antiviral CD8+ T cell response during chronic viral infection. J Immunol 173, 6284–6293.[CrossRef]
    [Google Scholar]
  5. Battegay, M., Cooper, S., Althage, A., Banziger, J., Hengartner, H. & Zinkernagel, R. M. ( 1991; ). Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates. J Virol Methods 33, 191–198.[CrossRef]
    [Google Scholar]
  6. Becker, T. C., Noel, R. J., Coats, W. S., Gomez-Foix, A. M., Alam, T., Gerard, R. D. & Newgard, C. B. ( 1994; ). Use of recombinant adenovirus for metabolic engineering of mammalian cells. Methods Cell Biol 43, 161–189.
    [Google Scholar]
  7. Bowen, D. G. & Walker, C. M. ( 2005; ). Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature 436, 946–952.[CrossRef]
    [Google Scholar]
  8. Boyer, J. L., Kobinger, G., Wilson, J. M. & Crystal, R. G. ( 2005; ). Adenovirus-based genetic vaccines for biodefense. Hum Gene Ther 16, 157–168.[CrossRef]
    [Google Scholar]
  9. Bruna-Romero, O., Gonzalez-Aseguinolaza, G., Hafalla, J. C., Tsuji, M. & Nussenzweig, R. S. ( 2001; ). Complete, long-lasting protection against malaria of mice primed and boosted with two distinct viral vectors expressing the same plasmodial antigen. Proc Natl Acad Sci U S A 98, 11491–11496.[CrossRef]
    [Google Scholar]
  10. Christensen, J. P., Marker, O. & Thomsen, A. R. ( 1994; ). The role of CD4+ T cells in cell-mediated immunity to LCMV: studies in MHC class I and class II deficient mice. Scand J Immunol 40, 373–382.[CrossRef]
    [Google Scholar]
  11. Cohen, J. ( 2005; ). Is an effective HIV vaccine feasible?. Science 309, 99 [CrossRef]
    [Google Scholar]
  12. Day, C. L., Kaufmann, D. E., Kiepiela, P., Brown, J. A., Moodley, E. S., Reddy, S., Mackey, E. W., Miller, J. D., Leslie, A. J. & other authors ( 2006; ). PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354.[CrossRef]
    [Google Scholar]
  13. Fitzgerald, J. C., Gao, G. P., Reyes-Sandoval, A., Pavlakis, G. N., Xiang, Z. Q., Wlazlo, A. P., Giles-Davis, W., Wilson, J. M. & Ertl, H. C. ( 2003; ). A simian replication-defective adenoviral recombinant vaccine to HIV-1 gag. J Immunol 170, 1416–1422.[CrossRef]
    [Google Scholar]
  14. Fuller, M. J., Khanolkar, A., Tebo, A. E. & Zajac, A. J. ( 2004; ). Maintenance, loss, and resurgence of T cell responses during acute, protracted, and chronic viral infections. J Immunol 172, 4204–4214.[CrossRef]
    [Google Scholar]
  15. Gandhi, R. T. & Walker, B. D. ( 2002; ). Immunologic control of HIV-1. Annu Rev Med 53, 149–172.[CrossRef]
    [Google Scholar]
  16. Gomez-Roman, V. R. & Robert-Guroff, M. ( 2003; ). Adenoviruses as vectors for HIV vaccines. AIDS Rev 5, 178–185.
    [Google Scholar]
  17. Gourley, T. S., Wherry, E. J., Masopust, D. & Ahmed, R. ( 2004; ). Generation and maintenance of immunological memory. Semin Immunol 16, 323–333.[CrossRef]
    [Google Scholar]
  18. Grakoui, A., Shoukry, N. H., Woollard, D. J., Han, J. H., Hanson, H. L., Ghrayeb, J., Murthy, K. K., Rice, C. M. & Walker, C. M. ( 2003; ). HCV persistence and immune evasion in the absence of memory T cell help. Science 302, 659–662.[CrossRef]
    [Google Scholar]
  19. Hassett, D. E., Slifka, M. K., Zhang, J. & Whitton, J. L. ( 2000; ). Direct ex vivo kinetic and phenotypic analyses of CD8+ T-cell responses induced by DNA immunization. J Virol 74, 8286–8291.[CrossRef]
    [Google Scholar]
  20. Hudrisier, D., Oldstone, M. B. & Gairin, J. E. ( 1997; ). The signal sequence of lymphocytic choriomeningitis virus contains an immunodominant cytotoxic T cell epitope that is restricted by both H-2Db and H-2Kb molecules. Virology 234, 62–73.[CrossRef]
    [Google Scholar]
  21. Klavinskis, L. S., Whitton, J. L. & Oldstone, M. B. ( 1989; ). Molecularly engineered vaccine which expresses an immunodominant T-cell epitope induces cytotoxic T lymphocytes that confer protection from lethal virus infection. J Virol 63, 4311–4316.
    [Google Scholar]
  22. Klavinskis, L. S., Whitton, J. L., Joly, E. & Oldstone, M. B. ( 1990; ). Vaccination and protection from a lethal viral infection: identification, incorporation, and use of a cytotoxic T lymphocyte glycoprotein epitope. Virology 178, 393–400.[CrossRef]
    [Google Scholar]
  23. Kovacs, J. A. & Masur, H. ( 2000; ). Prophylaxis against opportunistic infections in patients with human immunodeficiency virus infection. N Engl J Med 342, 1416–1429.[CrossRef]
    [Google Scholar]
  24. Kristensen, N. N., Christensen, J. P. & Thomsen, A. R. ( 2002; ). High numbers of IL-2-producing CD8+ T cells during viral infection: correlation with stable memory development. J Gen Virol 83, 2123–2133.
    [Google Scholar]
  25. Kundig, T. M., Shahinian, A., Kawai, K., Mittrucker, H. W., Sebzda, E., Bachmann, M. F., Mak, T. W. & Ohashi, P. S. ( 1996; ). Duration of TCR stimulation determines costimulatory requirement of T cells. Immunity 5, 41–52.[CrossRef]
    [Google Scholar]
  26. Lau, L. L., Jamieson, B. D., Somasundaram, T. & Ahmed, R. ( 1994; ). Cytotoxic T-cell memory without antigen. Nature 369, 648–652.[CrossRef]
    [Google Scholar]
  27. Liu, Z. X., Govindarajan, S., Okamoto, S. & Dennert, G. ( 2001; ). Fas-mediated apoptosis causes elimination of virus-specific cytotoxic T cells in the virus-infected liver. J Immunol 166, 3035–3041.[CrossRef]
    [Google Scholar]
  28. Oldstone, M. B., Tishon, A., Eddleston, M., de la Torre, J. C., McKee, T. & Whitton, J. L. ( 1993; ). Vaccination to prevent persistent viral infection. J Virol 67, 4372–4378.
    [Google Scholar]
  29. Pinto, A. R., Fitzgerald, J. C., Giles-Davis, W., Gao, G. P., Wilson, J. M. & Ertl, H. C. ( 2003; ). Induction of CD8+ T cells to an HIV-1 antigen through a prime boost regimen with heterologous E1-deleted adenoviral vaccine carriers. J Immunol 171, 6774–6779.[CrossRef]
    [Google Scholar]
  30. Rodrigues, E. G., Zavala, F., Eichinger, D., Wilson, J. M. & Tsuji, M. ( 1997; ). Single immunizing dose of recombinant adenovirus efficiently induces CD8+ T cell-mediated protective immunity against malaria. J Immunol 158, 1268–1274.
    [Google Scholar]
  31. Shiver, J. W. & Emini, E. A. ( 2004; ). Recent advances in the development of HIV-1 vaccines using replication-incompetent adenovirus vectors. Annu Rev Med 55, 355–372.[CrossRef]
    [Google Scholar]
  32. Shiver, J. W., Fu, T. M., Chen, L., Casimiro, D. R., Davies, M. E., Evans, R. K., Zhang, Z. Q., Simon, A. J., Trigona, W. L. & other authors ( 2002; ). Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 415, 331–335.[CrossRef]
    [Google Scholar]
  33. Slifka, M. K., Shen, H., Matloubian, M., Jensen, E. R., Miller, J. F. & Ahmed, R. ( 1996; ). Antiviral cytotoxic T-cell memory by vaccination with recombinant Listeria monocytogenes. J Virol 70, 2902–2910.
    [Google Scholar]
  34. Sullivan, N. J., Geisbert, T. W., Geisbert, J. B., Xu, L., Yang, Z. Y., Roederer, M., Koup, R. A., Jahrling, P. B. & Nabel, G. J. ( 2003; ). Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature 424, 681–684.[CrossRef]
    [Google Scholar]
  35. Sun, J. C. & Bevan, M. J. ( 2003; ). Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300, 339–342.[CrossRef]
    [Google Scholar]
  36. Thomsen, A. R., Volkert, M. & Marker, O. ( 1979; ). The timing of the immune response in relation to virus growth determines the outcome of the LCM infection. Acta Pathol Microbiol Scand (C) 87C, 47–54.
    [Google Scholar]
  37. Thomsen, A. R., Johansen, J., Marker, O. & Christensen, J. P. ( 1996; ). Exhaustion of CTL memory and recrudescence of viremia in lymphocytic choriomeningitis virus-infected MHC class II-deficient mice and B cell-deficient mice. J Immunol 157, 3074–3080.
    [Google Scholar]
  38. Uger, R. A. & Barber, B. H. ( 1998; ). Creating CTL targets with epitope-linked β 2-microglobulin constructs. J Immunol 160, 1598–1605.
    [Google Scholar]
  39. Uger, R. A., Chan, S. M. & Barber, B. H. ( 1999; ). Covalent linkage to β 2-microglobulin enhances the MHC stability and antigenicity of suboptimal CTL epitopes. J Immunol 162, 6024–6028.
    [Google Scholar]
  40. Vanniasinkam, T. & Ertl, H. C. ( 2005; ). Adenoviral gene delivery for HIV-1 vaccination. Curr Gene Ther 5, 203–212.[CrossRef]
    [Google Scholar]
  41. Wherry, E. J., Blattman, J. N. & Ahmed, R. ( 2005; ). Low CD8 T-cell proliferative potential and high viral load limit the effectiveness of therapeutic vaccination. J Virol 79, 8960–8968.[CrossRef]
    [Google Scholar]
  42. Wodarz, D., May, R. M. & Nowak, M. A. ( 2000; ). The role of antigen-independent persistence of memory cytotoxic T lymphocytes. Int Immunol 12, 467–477.[CrossRef]
    [Google Scholar]
  43. Wu, Q., Moyana, T. & Xiang, J. ( 2001; ). Cancer gene therapy by adenovirus-mediated gene transfer. Curr Gene Ther 1, 101–122.[CrossRef]
    [Google Scholar]
  44. Wu, Q., Xia, D., Carlsen, S. & Xiang, J. ( 2005; ). Adenovirus-mediated transgene-engineered dendritic cell vaccine of cancer. Curr Gene Ther 5, 237–247.[CrossRef]
    [Google Scholar]
  45. Zajac, A. J., Blattman, J. N., Murali-Krishna, K., Sourdive, D. J., Suresh, M., Altman, J. D. & Ahmed, R. ( 1998; ). Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 188, 2205–2213.[CrossRef]
    [Google Scholar]
  46. Zarei, S., Abraham, S., Arrighi, J. F., Haller, O., Calzascia, T., Walker, P. R., Kundig, T. M., Hauser, C. & Piguet, V. ( 2004; ). Lentiviral transduction of dendritic cells confers protective antiviral immunity in vivo. J Virol 78, 7843–7845.[CrossRef]
    [Google Scholar]
  47. Zinkernagel, R. M. & Hengartner, H. ( 2004; ). On immunity against infections and vaccines: credo 2004. Scand J Immunol 60, 9–13.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82727-0
Loading
/content/journal/jgv/10.1099/vir.0.82727-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error