1887

Abstract

yellow net virus (SYNV) serves as the paradigm for the cell biology of plant-adapted rhabdoviruses. Fluorescence recovery after photobleaching (FRAP) demonstrated that SYNV-induced intranuclear membranes are contiguous with the endomembrane system. Fluorescence intensity measurements of a green fluorescent protein-tagged nuclear envelope marker were consistent with electron microscopy studies, which suggest that infection by SYNV results in invagination of the inner nuclear membrane. Fusions of a red fluorescent protein to five SYNV-encoded proteins were used to determine the relationship between virus-induced intranuclear membranes and the localization of viral proteins. These data establish definitively that localization in the context of infected cells provides a superior means to predict protein function compared with localization studies conducted in mock-inoculated cells. Substructure has been identified within the viroplasm, the putative site of virus replication, which suggests that the nucleocapsid (N) protein occupies a region at the junction between the viroplasm and intranuclear membranes that largely excludes the phosphoprotein. Within virus-infected nuclei, the SYNV matrix (M) protein and glycoprotein (G) were associated predominantly with membranes, whereas sc4, the predicted movement protein, accumulated primarily at punctate loci on the periphery of cells. Coexpression of differently tagged SYNV protein fusions in combination with FRAP analyses suggest a model whereby the replication and morphogenesis of SYNV are spatially separated events. Finally, an M protein-containing complex was discovered that appears to bud from the nucleus and that moves on ER membranes. Taken together, these data represent the most comprehensive analyses of rhabdoviral protein localization conducted in the context of infected cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82698-0
2007-06-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/6/1810.html?itemId=/content/journal/jgv/10.1099/vir.0.82698-0&mimeType=html&fmt=ahah

References

  1. Albertini, A. A., Wernimont, A. K., Muziol, T., Ravelli, R. B., Clapier, C. R., Schoehn, G., Weissenhorn, W. & Ruigrok, R. W. ( 2006; ). Crystal structure of the rabies virus nucleoprotein-RNA complex. Science 313, 360–363.[CrossRef]
    [Google Scholar]
  2. Brigneti, G., Voinnet, O., Li, W. X., Ji, L. H., Ding, S.-W. & Baulcombe, D. C. ( 1998; ). Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17, 6739–6746.[CrossRef]
    [Google Scholar]
  3. Choi, T. J., Kuwata, S., Koonin, E. V., Heaton, L. A. & Jackson, A. O. ( 1992; ). Structure of the L (polymerase) protein gene of sonchus yellow net virus. Virology 189, 31–39.[CrossRef]
    [Google Scholar]
  4. Chung, S. M., Frankman, E. L. & Tzfira, T. ( 2005; ). A versatile vector system for multiple gene expression in plants. Trends Plant Sci 10, 357–361.[CrossRef]
    [Google Scholar]
  5. Collings, D. A., Carter, C. N., Rink, J. C., Scott, A. C., Wyatt, S. E. & Allen, N. S. ( 2000; ). Plant nuclei can contain extensive grooves and invaginations. Plant Cell 12, 2425–2440.[CrossRef]
    [Google Scholar]
  6. Das, S. C., Nayak, D., Zhou, Y. & Pattnaik, A. K. ( 2006; ). Visualization of intracellular transport of vesicular stomatitis virus nucleocapsids in living cells. J Virol 80, 6368–6377.[CrossRef]
    [Google Scholar]
  7. Dietzgen, R. G., Callaghan, B., Wetzel, T. & Dale, J. L. ( 2006; ). Completion of the genome sequence of Lettuce necrotic yellows virus, type species of the genus Cytorhabdovirus. Virus Res 118, 16–22.[CrossRef]
    [Google Scholar]
  8. Goldberg, K.-B., Modrell, B., Hillman, B. I., Heaton, L. A., Choi, T.-J. & Jackson, A. O. ( 1991; ). Structure of the glycoprotein gene of Sonchus yellow net virus, a plant rhabdovirus. Virology 185, 32–38.[CrossRef]
    [Google Scholar]
  9. Goodin, M. M., Austin, J., Tobias, R., Fujita, M., Morales, C. & Jackson, A. O. ( 2001; ). Interactions and nuclear import of the N and P proteins of Sonchus yellow net virus, a plant nucleorhabdovirus. J Virol 75, 9393–9406.[CrossRef]
    [Google Scholar]
  10. Goodin, M. M., Dietzgen, R. G., Schichnes, D., Ruzin, S. & Jackson, A. O. ( 2002; ). pGD vectors: versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. Plant J 31, 375–383.[CrossRef]
    [Google Scholar]
  11. Goodin, M., Yelton, S., Ghosh, D., Mathews, S. & Lesnaw, J. ( 2005; ). Live-cell imaging of rhabdovirus-induced morphological changes in plant nuclear membranes. Mol Plant Microbe Interact 18, 703–709.[CrossRef]
    [Google Scholar]
  12. Green, T. J., Macpherson, S., Qiu, S., Lebowitz, J., Wertz, G. W. & Luo, M. ( 2000; ). Study of the assembly of vesicular stomatitis virus N protein: role of the P protein. J Virol 74, 9515–9524.[CrossRef]
    [Google Scholar]
  13. Green, T. J., Zhang, X., Wertz, G. W. & Luo, M. ( 2006; ). Structure of the vesicular stomatitis virus nucleoprotein-RNA complex. Science 313, 357–360.[CrossRef]
    [Google Scholar]
  14. Haseloff, J., Siemering, K. R., Prasher, D. C. & Hodge, S. ( 1997; ). Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci U S A 94, 2122–2127.[CrossRef]
    [Google Scholar]
  15. Heaton, L. A., Zuidema, D. & Jackson, A. O. ( 1987; ). Structure of the M2 protein gene of Sonchus yellow net virus. Virology 161, 234–241.[CrossRef]
    [Google Scholar]
  16. Herold, F. & Munz, K. ( 1965; ). Electron microscope demonstration of virus-like particles in Perigrinus maidis following acquisition of maize mosaic virus. Virology 25, 412–417.[CrossRef]
    [Google Scholar]
  17. Hillman, B. I., Heaton, L. A., Hunter, B. G., Modrell, B. & Jackson, A. O. ( 1990; ). Structure of the gene encoding the M1 protein of Sonchus yellow net virus. Virology 179, 201–207.[CrossRef]
    [Google Scholar]
  18. Holmer, L. & Worman, H. J. ( 2001; ). Inner nuclear membrane proteins: functions and targeting. Cell Mol Life Sci 58, 1741–1747.[CrossRef]
    [Google Scholar]
  19. Huang, Y. W., Geng, Y. F., Ying, X. B., Chen, X. Y. & Fang, R. X. ( 2005; ). Identification of a movement protein of rice yellow stunt rhabdovirus. J Virol 79, 2108–2114.[CrossRef]
    [Google Scholar]
  20. Irons, S. L., Evans, D. E. & Brandizzi, F. ( 2003; ). The first 238 amino acids of the human lamin B receptor are targeted to the nuclear envelope in plants. J Exp Bot 54, 943–950.[CrossRef]
    [Google Scholar]
  21. Jackson, A. O. & Christie, S. R. ( 1977; ). Purification and some physicochemical properties of Sonchus yellow net virus. Virology 77, 344–355.[CrossRef]
    [Google Scholar]
  22. Jackson, A. O., Dietzgen, R. G., Goodin, M. M., Bragg, J. N. & Deng, M. ( 2005; ). Biology of plant rhabdoviruses. Annu Rev Phytopathol 43, 623–660.[CrossRef]
    [Google Scholar]
  23. Jayakar, H. R., Jeetendra, E. & Whitt, M. A. ( 2004; ). Rhabdovirus assembly and budding. Virus Res 106, 117–132.[CrossRef]
    [Google Scholar]
  24. Lucas, W. J. ( 2006; ). Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344, 169–184.[CrossRef]
    [Google Scholar]
  25. Majumdar, A., Bhattacharya, R., Basak, S., Shaila, M. S., Chattopadhyay, D. & Roy, S. ( 2004; ). P-protein of Chandipura virus is an N-protein-specific chaperone that acts at the nucleation stage. Biochemistry 43, 2863–2870.[CrossRef]
    [Google Scholar]
  26. Makatsori, D., Kourmouli, N., Polioudaki, H., Shultz, L. D., McLean, K., Theodoropoulos, P. A., Singh, P. B. & Georgatos, S. D. ( 2004; ). The inner nuclear membrane protein lamin B receptor forms distinct microdomains and links epigenetically marked chromatin to the nuclear envelope. J Biol Chem 279, 25567–25573.[CrossRef]
    [Google Scholar]
  27. Martins, C. R., Johnson, J. A., Lawrence, D. M., Choi, T. J., Pisi, A. M., Tobin, S. L., Lapidus, D., Wagner, J. D., Ruzin, S. & other authors ( 1998; ). Sonchus yellow net rhabdovirus nuclear viroplasms contain polymerase-associated proteins. J Virol 72, 5669–5679.
    [Google Scholar]
  28. Masters, P. S. & Banerjee, A. K. ( 1988; ). Resolution of multiple complexes of phosphoprotein NS with nucleocapsid protein N of vesicular stomatitis virus. J Virol 62, 2651–2657.
    [Google Scholar]
  29. Mavrakis, M., Mehouas, S., Real, E., Iseni, F., Blondel, D., Tordo, N. & Ruigrok, R. W. ( 2006; ). Rabies virus chaperone: identification of the phosphoprotein peptide that keeps nucleoprotein soluble and free from non-specific RNA. Virology 349, 422–429.[CrossRef]
    [Google Scholar]
  30. Melcher, U. ( 2000; ). The ‘30K’ superfamily of viral movement proteins. J Gen Virol 81, 257–266.
    [Google Scholar]
  31. Mettenleiter, T. C. ( 2004; ). Budding events in herpesvirus morphogenesis. Virus Res 106, 167–180.[CrossRef]
    [Google Scholar]
  32. Mettenleiter, T. C. ( 2006; ). Intriguing interplay between viral proteins during herpesvirus assembly or: the herpesvirus assembly puzzle. Vet Microbiol 113, 163–169.[CrossRef]
    [Google Scholar]
  33. Panaviene, Z., Baker, J. M. & Nagy, P. D. ( 2003; ). The overlapping RNA-binding domains of p33 and p92 replicase proteins are essential for tombusvirus replication. Virology 308, 191–205.[CrossRef]
    [Google Scholar]
  34. Reed, S. E., Tsai, C. W., Willie, K. J., Redinbaugh, M. G. & Hogenhout, S. A. ( 2005; ). Shotgun sequencing of the negative-sense RNA genome of the rhabdovirus maize mosaic virus. J Virol Methods 129, 91–96.[CrossRef]
    [Google Scholar]
  35. Revill, P., Trinh, X., Dale, J. & Harding, R. ( 2005; ). Taro vein chlorosis virus: characterization and variability of a new nucleorhabdovirus. J Gen Virol 86, 491–499.[CrossRef]
    [Google Scholar]
  36. Ruiz, M. T., Voinnet, O. & Baulcombe, D. C. ( 1998; ). Initiation and maintenance of virus-induced gene silencing. Plant Cell 10, 937–946.[CrossRef]
    [Google Scholar]
  37. Sbalzarini, I. F., Mezzacasa, A., Helenius, A. & Koumoutsakos, P. ( 2005; ). Effects of organelle shape on fluorescence recovery after photobleaching. Biophys J 89, 1482–1492.[CrossRef]
    [Google Scholar]
  38. Scholthof, H. B. ( 2005; ). Plant virus transport: motions of functional equivalence. Trends Plant Sci 10, 376–382.[CrossRef]
    [Google Scholar]
  39. Senthil, G., Liu, H., Puram, V. G., Clark, A., Stromberg, A. & Goodin, M. M. ( 2005; ). Specific and common changes in Nicotiana benthamiana gene expression in response to infection by enveloped viruses. J Gen Virol 86, 2615–2625.[CrossRef]
    [Google Scholar]
  40. Swenson, D. L., Warfield, K. L., Kuehl, K., Larsen, T., Hevey, M. C., Schmaljohn, A., Bavari, S. & Aman, M. J. ( 2004; ). Generation of Marburg virus-like particles by co-expression of glycoprotein and matrix protein. FEMS Immunol Med Microbiol 40, 27–31.[CrossRef]
    [Google Scholar]
  41. Tordo, N., Benmansour, A., Calisher, C., Dietzgen, R. G., Fang, R.-X., Jackson, A. O., Kurath, G., Nadin-Davis, S., Tesh, R. B. & Walker, P. J. ( 2005; ). Family Rhabdoviridae. In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses, pp. 623–644. Edited by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger & L. A. Ball. San Diego: Elsevier Academic Press.
  42. Tsai, C.-W., Redinbaugh, M. G., Willie, K. J., Reed, S., Goodin, M. & Hogenhout, S. ( 2005; ). Complete genome sequence and in planta subcellular localization of maize fine streak virus proteins. J Virol 79, 5304–5314.[CrossRef]
    [Google Scholar]
  43. Turner, K. A., Sit, T. L., Callaway, A. S., Allen, N. S. & Lommel, S. A. ( 2004; ). Red clover necrotic mosaic virus replication proteins accumulate at the endoplasmic reticulum. Virology 320, 276–290.[CrossRef]
    [Google Scholar]
  44. Tzfira, T., Tian, G. W., Lacroix, B., Vyas, S., Li, J., Leitner-Dagan, Y., Krichevsky, A., Taylor, T., Vainstein, A. & Citovsky, V. ( 2005; ). pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol Biol 57, 503–506.[CrossRef]
    [Google Scholar]
  45. van Beek, N. A. M., Lohuis, D., Dijkstra, J. & Peters, D. ( 1985; ). Morphogenesis of Sonchus yellow net virus in cowpea protoplasts. J Ultrastruct Res 90, 294–303.[CrossRef]
    [Google Scholar]
  46. Wagner, J. D., Choi, T.-J. & Jackson, A. O. ( 1996; ). Extraction of nuclei from Sonchus yellow net rhabdovirus-infected plants yields a polymerase that synthesizes viral mRNAs and polyadenylated plus-strand leader RNA. J Virol 70, 468–477.
    [Google Scholar]
  47. Zuidema, D., Heaton, L. A. & Jackson, A. O. ( 1987; ). Structure of the nucleocapsid protein gene of Sonchus yellow net virus. Virology 159, 373–380.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82698-0
Loading
/content/journal/jgv/10.1099/vir.0.82698-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error