1887

Abstract

The ‘high-risk’ human papillomaviruses (HPVs) cause persistent infections of the anogenital region that may resolve spontaneously following activation of a protective immune response. The aim of this study was to determine whether cell-mediated immunity (CMI) to the early protein E2 was associated with disease regression and to establish whether E2 CMI and antibodies to L1 virus-like particles (VLPs) were associated markers of immunity to HPV. Lymphoproliferative responses to histidine-tagged E2 and antibody responses to VLPs were measured in patients with persistent cervical dysplasia, those whose disease had recently resolved and normal controls. Resolvers had significantly higher E2-specific lymphoproliferative responses when compared with normal controls or persisters, whereas there was no significant difference between the persisters and the normal controls. The T cells stimulated by E2 secreted high levels of gamma interferon (IFN-), consistent with a type 1 helper (Th1) phenotype. VLP IgG responses were associated with current or previous HPV infection, but not with disease regression or a lymphoproliferative response to E2. Major histocompatibility complex class I-restricted T cells secreted IFN- following stimulation with E1, and E2 peptides were detected more frequently in the persister group. The data showed that lymphoproliferative responses to E2 with a cytokine profile indicative of Th1 are associated with disease resolution, supporting the development of a therapeutic vaccine that activates this type of response for the treatment of individuals with pre-existing disease.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82678-0
2007-03-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/3/803.html?itemId=/content/journal/jgv/10.1099/vir.0.82678-0&mimeType=html&fmt=ahah

References

  1. Amella, C. A., Lofgren, L. A., Ronn, A. M., Nouri, M., Shikowitz, M. J. & Steinberg, B. M. ( 1994; ). Latent infection induced with cottontail rabbit papillomavirus. A model for human papillomavirus latency. Am J Pathol 144, 1167–1171.
    [Google Scholar]
  2. Appay, V. ( 2004; ). The physiological role of cytotoxic CD4+ T-cells: the holy grail?. Clin Exp Immunol 138, 10–13.[CrossRef]
    [Google Scholar]
  3. Benito, J. M., Lopez, M. & Soriano, V. ( 2004; ). The role of CD8+ T-cell response in HIV infection. AIDS Rev 6, 79–88.
    [Google Scholar]
  4. Bontkes, H. J., de Gruijl, T. D., Bijl, A., Verheijen, R. H., Meijer, C. J., Scheper, R. J., Stern, P. L., Burns, J. E., Maitland, N. J. & Walboomers, J. M. ( 1999; ). a Human papillomavirus type 16 E2-specific T-helper lymphocyte responses in patients with cervical intraepithelial neoplasia. J Gen Virol 80, 2453–2459.
    [Google Scholar]
  5. Bontkes, H. J., de Gruijl, T. D., Walboomers, J. M., Schiller, J. T., Dillner, J., Helmerhorst, T. J., Verheijen, R. H., Scheper, R. J. & Meijer, C. J. ( 1999; ). b Immune responses against human papillomavirus (HPV) type 16 virus-like particles in a cohort study of women with cervical intraepithelial neoplasia. II. Systemic but not local IgA responses correlate with clearance of HPV-16. J Gen Virol 80, 409–417.
    [Google Scholar]
  6. Brown, D. M., Roman, E. & Swain, S. L. ( 2004; ). CD4 T cell responses to influenza infection. Semin Immunol 16, 171–177.[CrossRef]
    [Google Scholar]
  7. Chiang, C. M., Ustav, M., Stenlund, A., Ho, T. F., Broker, T. R. & Chow, L. T. ( 1992; ). Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins. Proc Natl Acad Sci U S A 89, 5799–5803.[CrossRef]
    [Google Scholar]
  8. Clerici, M., Merola, M., Ferrario, E., Trabattoni, D., Villa, M. L., Stefanon, B., Venzon, D. J., Shearer, G. M., De Palo, G. & Clerici, E. ( 1997; ). Cytokine production patterns in cervical intraepithelial neoplasia: association with human papillomavirus infection. J Natl Cancer Inst 89, 245–250.[CrossRef]
    [Google Scholar]
  9. Clifford, G. M., Smith, J. S., Plummer, M., Muñoz, N. & Franceschi, S. ( 2003; ). Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br J Cancer 88, 63–73.[CrossRef]
    [Google Scholar]
  10. Coleman, N., Birley, H. D., Renton, A. M., Hanna, N. F., Ryait, B. K., Byrne, M., Taylor-Robinson, D. & Stanley, M. A. ( 1994; ). Immunological events in regressing genital warts. Am J Clin Pathol 102, 768–774.
    [Google Scholar]
  11. Conley, L. J., Ellerbrock, T. V., Bush, T. J., Chiasson, M. A., Sawo, D. & Wright, T. C. ( 2002; ). HIV-1 infection and risk of vulvovaginal and perianal condylomata acuminata and intraepithelial neoplasia: a prospective cohort study. Lancet 359, 108–113.[CrossRef]
    [Google Scholar]
  12. Davidson, E. J., Brown, M. D., Burt, D. J., Parish, J. L., Gaston, K., Kitchener, H. C., Stacey, S. N. & Stern, P. L. ( 2001; ). Human T cell responses to HPV 16 E2 generated with monocyte-derived dendritic cells. Int J Cancer 94, 807–812.[CrossRef]
    [Google Scholar]
  13. Davidson, E. J., Sehr, P., Faulkner, R. L., Parish, J. L., Gaston, K., Moore, R. A., Pawlita, M., Kitchener, H. C. & Stern, P. L. ( 2003; ). Human papillomavirus type 16 E2- and L1-specific serological and T-cell responses in women with vulval intraepithelial neoplasia. J Gen Virol 84, 2089–2097.[CrossRef]
    [Google Scholar]
  14. de Jong, A., van der Burg, S. H., Kwappenberg, K. M., van der Hulst, J. M., Franken, K. L., Geluk, A., van Meijgaarden, K. E., Drijfhout, J. W. & Kenter, G. ( 2002; ). Frequent detection of human papillomavirus 16 E2-specific T-helper immunity in healthy subjects. Cancer Res 62, 472–479.
    [Google Scholar]
  15. de Jong, A., van Poelgeest, M. I., van der Hulst, J. M., Drijfhout, J. W., Fleuren, G. J., Melief, C. J., Kenter, G., Offringa, R. & van der Burg, S. H. ( 2004; ). Human papillomavirus type 16-positive cervical cancer is associated with impaired CD4+ T-cell immunity against early antigens E2 and E6. Cancer Res 64, 5449–5455.[CrossRef]
    [Google Scholar]
  16. Ferenczy, A., Mitao, M., Nagai, N., Silverstein, S. J. & Crum, C. P. ( 1985; ). Latent papillomavirus and recurring genital warts. N Engl J Med 313, 784–788.[CrossRef]
    [Google Scholar]
  17. Filippova, M., Parkhurst, L. & Duerksen-Hughes, P. J. ( 2004; ). The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J Biol Chem 279, 25729–25744.[CrossRef]
    [Google Scholar]
  18. Frazer, I. H. ( 2004; ). Prevention of cervical cancer through papillomavirus vaccination. Nat Rev Immunol 4, 46–54.[CrossRef]
    [Google Scholar]
  19. Giroglou, T., Sapp, M., Lane, C., Fligge, C., Christensen, N. D., Streeck, R. E. & Rose, R. C. ( 2001; ). Immunological analyses of human papillomavirus capsids. Vaccine 19, 1783–1793.[CrossRef]
    [Google Scholar]
  20. Heard, I., Tassie, J. M., Schmitz, V., Mandelbrot, L., Kazatchkine, M. D. & Orth, G. ( 2000; ). Increased risk of cervical disease among human immunodeficiency virus-infected women with severe immunosuppression and high human papillomavirus load. Obstet Gynecol 96, 403–409.[CrossRef]
    [Google Scholar]
  21. Heinemann, L., Dillon, S., Crawford, A., Backstrom, B. T. & Hibma, M. H. ( 2004; ). Flow cytometric quantitation of the protective efficacy of dendritic cell based vaccines in a human papillomavirus type 16 murine challenge model. J Virol Methods 117, 9–18.[CrossRef]
    [Google Scholar]
  22. Hilders, C. G., Houbiers, J. G., Krul, E. J. & Fleuren, G. J. ( 1994; ). The expression of histocompatibility-related leukocyte antigens in the pathway to cervical carcinoma. Am J Clin Pathol 101, 5–12.
    [Google Scholar]
  23. Hilders, C. G., Munoz, I. M., Nooyen, Y. & Fleuren, G. J. ( 1995; ). Altered HLA expression by metastatic cervical carcinoma cells as a factor in impaired immune surveillance. Gynecol Oncol 57, 366–375.[CrossRef]
    [Google Scholar]
  24. Jeon, S., Allen-Hoffmann, B. L. & Lambert, P. F. ( 1995; ). Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol 69, 2989–2997.
    [Google Scholar]
  25. Johnston, K. B., Monteiro, J. M., Schultz, L. D., Chen, L., Wang, F., Ausensi, V. A., Dell, E. C., Santos, E. B., Moore, R. A. & other authors ( 2005; ). Protection of beagle dogs from mucosal challenge with canine oral papillomavirus by immunization with recombinant adenoviruses expressing codon-optimized early genes. Virology 336, 208–218.[CrossRef]
    [Google Scholar]
  26. Kadish, A. S., Timmins, P., Wang, Y., Ho, G. Y., Burk, R. D., Ketz, J., He, W., Romney, S. L., Johnson, A. & other authors ( 2002; ). Regression of cervical intraepithelial neoplasia and loss of human papillomavirus (HPV) infection is associated with cell-mediated immune responses to an HPV type 16 E7 peptide. Cancer Epidemiol Biomarkers Prev 11, 483–488.
    [Google Scholar]
  27. Kirnbauer, R., Hubbert, N. L., Wheeler, C. M., Becker, T. M., Lowy, D. R. & Schiller, J. T. ( 1994; ). A virus-like particle enzyme-linked immunosorbent assay detects serum antibodies in a majority of women infected with human papillomavirus type 16. J Natl Cancer Inst 86, 494–499.[CrossRef]
    [Google Scholar]
  28. Knowles, G., O’Neil, B. W. & Campo, M. S. ( 1996; ). Phenotypical characterization of lymphocytes infiltrating regressing papillomas. J Virol 70, 8451–8458.
    [Google Scholar]
  29. Konya, J., Eklund, C., af Geijersstam, V., Yuan, F., Stuber, G. & Dillner, J. ( 1997; ). Identification of a cytotoxic T-lymphocyte epitope in the human papillomavirus type 16 E2 protein. J Gen Virol 78, 2615–2620.
    [Google Scholar]
  30. Koutsky, L. A., Ault, K. A., Wheeler, C. M., Brown, D. R., Barr, E., Alvarez, F. B., Chiacchierini, L. M. & Jansen, K. U. ( 2002; ). A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med 347, 1645–1651.[CrossRef]
    [Google Scholar]
  31. Lehtinen, M., Hibma, M. H., Stellato, G., Kuoppala, T. & Paavonen, J. ( 1995; ). Human T helper cell epitopes overlap B cell and putative cytotoxic T cell epitopes in the E2 protein of human papillomavirus type 16. Biochem Biophys Res Commun 209, 541–546.[CrossRef]
    [Google Scholar]
  32. Middleton, K., Peh, W., Southern, S., Griffin, H., Sotlar, K., Nakahara, T., El-Sherif, A., Morris, L., Seth, R. & other authors ( 2003; ). Organization of human papillomavirus productive cycle during neoplastic progression provides a basis for selection of diagnostic markers. J Virol 77, 10186–10201.[CrossRef]
    [Google Scholar]
  33. Milde-Langosch, K., Riethdorf, S. & Loning, T. ( 2000; ). Association of human papillomavirus infection with carcinoma of the cervix uteri and its precursor lesions: theoretical and practical implications. Virchows Arch 437, 227–233.[CrossRef]
    [Google Scholar]
  34. Miskovsky, E. P., Liu, A. Y., Pavlat, W., Viveen, R., Stanhope, P. E., Finzi, D., Fox, W. M., Hruban, R. H., Podack, E. R. & Siliciano, R. F. ( 1994; ). Studies of the mechanism of cytolysis by HIV-1-specific CD4+ human CTL clones induced by candidate AIDS vaccines. J Immunol 153, 2787–2799.
    [Google Scholar]
  35. Moss, P. & Khan, N. ( 2004; ). CD8+ T-cell immunity to cytomegalovirus. Hum Immunol 65, 456–464.[CrossRef]
    [Google Scholar]
  36. Muñoz, N., Bosch, F. X., de Sanjosé, S., Herrero, R., Castellsagué, X., Shah, K. V., Snijders, P. J. & Meijer, C. J. ( 2003; ). Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348, 518–527.[CrossRef]
    [Google Scholar]
  37. Nicholls, P. K., Doorbar, J., Moore, R. A., Peh, W., Anderson, D. M. & Stanley, M. A. ( 2001; ). Detection of viral DNA and E4 protein in basal keratinocytes of experimental canine oral papillomavirus lesions. Virology 284, 82–98.[CrossRef]
    [Google Scholar]
  38. Paludan, C., Bickham, K., Nikiforow, S., Tsang, M. L., Goodman, K., Hanekom, W. A., Fonteneau, J. F., Stevanovic, S. & Münz, C. ( 2002; ). Epstein–Barr nuclear antigen 1-specific CD4+ Th1 cells kill Burkitt’s lymphoma cells. J Immunol 169, 1593–1603.[CrossRef]
    [Google Scholar]
  39. Petry, K. U., Scheffel, D., Bode, U., Gabrysiak, T., Kochel, H., Kupsch, E., Glaubitz, M., Niesert, S., Kuhnle, H. & Schedel, I. ( 1994; ). Cellular immunodeficiency enhances the progression of human papillomavirus-associated cervical lesions. Int J Cancer 57, 836–840.[CrossRef]
    [Google Scholar]
  40. Pisani, P., Parkin, D. M. & Ferlay, J. ( 1993; ). Estimates of the worldwide mortality from eighteen major cancers in 1985. Implications for prevention and projections of future burden. Int J Cancer 55, 891–903.[CrossRef]
    [Google Scholar]
  41. Qian, J., Dong, Y., Pang, Y. Y., Ibrahim, R., Berzofsky, J. A., Schiller, J. T. & Khleif, S. N. ( 2006; ). Combined prophylactic and therapeutic cancer vaccine: enhancing CTL responses to HPV16 E2 using a chimeric VLP in HLA-A2 mice. Int J Cancer 118, 3022–3029.[CrossRef]
    [Google Scholar]
  42. Rose, R. C., Bonnez, W., Da Rin, C., McCance, D. J. & Reichman, R. C. ( 1994; ). Serological differentiation of human papillomavirus types 11, 16 and 18 using recombinant virus-like particles. J Gen Virol 75, 2445–2449.[CrossRef]
    [Google Scholar]
  43. Rudlinger, R., Smith, I. W., Bunney, M. H. & Hunter, J. A. ( 1986; ). Human papillomavirus infections in a group of renal transplant recipients. Br J Dermatol 115, 681–692.[CrossRef]
    [Google Scholar]
  44. Sarkar, A. K., Tortolero-Luna, G., Follen, M. & Sastry, K. J. ( 2005; ). Inverse correlation of cellular immune responses specific to synthetic peptides from the E6 and E7 oncoproteins of HPV-16 with recurrence of cervical intraepithelial neoplasia in a cross-sectional study. Gynecol Oncol 99, S251–S261.[CrossRef]
    [Google Scholar]
  45. Sasagawa, T., Rose, R. C., Azar, K. K., Sakai, A. & Inoue, M. ( 2003; ). Mucosal immunoglobulin-A and -G responses to oncogenic human papilloma virus capsids. Int J Cancer 104, 328–335.[CrossRef]
    [Google Scholar]
  46. Schiffman, M., Herrero, R., Desalle, R., Hildesheim, A., Wacholder, S., Rodriguez, A. C., Bratti, M. C., Sherman, M. E., Morales, J. & other authors ( 2005; ). The carcinogenicity of human papillomavirus types reflects viral evolution. Virology 337, 76–84.[CrossRef]
    [Google Scholar]
  47. Schlecht, N. F., Platt, R. W., Duarte-Franco, E., Costa, M. C., Sobrinho, J. P., Prado, J. C., Ferenczy, A., Rohan, T. E., Villa, L. L. & Franco, E. L. ( 2003; ). Human papillomavirus infection and time to progression and regression of cervical intraepithelial neoplasia. J Natl Cancer Inst 95, 1336–1343.[CrossRef]
    [Google Scholar]
  48. Selvakumar, R., Ahmed, R. & Wettstein, F. O. ( 1995; ). a Tumor regression is associated with a specific immune response to the E2 protein of cottontail rabbit papillomavirus. Virology 208, 298–302.[CrossRef]
    [Google Scholar]
  49. Selvakumar, R., Borenstein, L. A., Lin, Y. L., Ahmed, R. & Wettstein, F. O. ( 1995; ). b Immunization with nonstructural proteins E1 and E2 of cottontail rabbit papillomavirus stimulates regression of virus-induced papillomas. J Virol 69, 602–605.
    [Google Scholar]
  50. Sun, Y., Eluf-Neto, J., Bosch, F. X., Muñoz, N., Walboomers, J. M., Meijer, C. J., Shah, K. V., Clayman, B. & Viscidi, R. P. ( 1999; ). Serum antibodies to human papillomavirus 16 proteins in women from Brazil with invasive cervical carcinoma. Cancer Epidemiol Biomarkers Prev 8, 935–940.
    [Google Scholar]
  51. Tagami, H., Oguchi, M. & Ofuji, S. ( 1980; ). The phenomenon of spontaneous regression of numerous flat warts: immunohistological studies. Cancer 45, 2557–2563.[CrossRef]
    [Google Scholar]
  52. Thompson, D. A., Zacny, V., Belinsky, G. S., Classon, M., Jones, D. L., Schlegel, R. & Münger, K. ( 2001; ). The HPV E7 oncoprotein inhibits tumor necrosis factor α-mediated apoptosis in normal human fibroblasts. Oncogene 20, 3629–3640.[CrossRef]
    [Google Scholar]
  53. Vambutas, A., DeVoti, J., Pinn, W., Steinberg, B. M. & Bonagura, V. R. ( 2001; ). Interaction of human papillomavirus type 11 E7 protein with TAP-1 results in the reduction of ATP-dependent peptide transport. Clin Immunol 101, 94–99.[CrossRef]
    [Google Scholar]
  54. van Poelgeest, M. I., Nijhuis, E. R., Kwappenberg, K. M., Hamming, I. E., Wouter Drijfhout, J., Fleuren, G. J., van der Zee, A. G., Melief, C. J., Kenter, G. G. & other authors ( 2006; ). Distinct regulation and impact of type 1 T-cell immunity against HPV16 L1, E2 and E6 antigens during HPV16-induced cervical infection and neoplasia. Int J Cancer 118, 675–683.[CrossRef]
    [Google Scholar]
  55. Vayrynen, M., Syrjanen, K., Mantyjarvi, R., Castren, O. & Saarikoski, S. ( 1984; ). Langerhans cells in human papillomavirus (HPV) lesions of the uterine cervix identified by the monoclonal antibody OKT-6. Int J Gynaecol Obstet 22, 375–383.[CrossRef]
    [Google Scholar]
  56. Vayrynen, M., Syrjanen, K., Mantyjarvi, R., Castren, O. & Saarikoski, S. ( 1985; ). Immunophenotypes of lymphocytes in prospectively followed up human papillomavirus lesions of the cervix. Genitourin Med 61, 190–196.
    [Google Scholar]
  57. Viscidi, R. P., Schiffman, M., Hildesheim, A., Herrero, R., Castle, P. E., Bratti, M. C., Rodriguez, A. C., Sherman, M. E. & Wang, S. ( 2004; ). Seroreactivity to human papillomavirus (HPV) types 16, 18, or 31 and risk of subsequent HPV infection: results from a population-based study in Costa Rica. Cancer Epidemiol Biomarkers Prev 13, 324–327.[CrossRef]
    [Google Scholar]
  58. Walboomers, J. M., Jacobs, M. V., Manos, M. M., Bosch, F. X., Kummer, J. A., Shah, K. V., Snijders, P. J., Peto, J., Meijer, C. J. & Muñoz, N. ( 1999; ). Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189, 12–19.[CrossRef]
    [Google Scholar]
  59. Wick, M. J. & Pfeifer, J. D. ( 1996; ). Major histocompatibility complex class I presentation of ovalbumin peptide 257–264 from exogenous sources: protein context influences the degree of TAP-independent presentation. Eur J Immunol 26, 2790–2799.[CrossRef]
    [Google Scholar]
  60. Zagury, D. ( 1991; ). Anti-HIV cellular immunotherapy in AIDS. Lancet 338, 694–695.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82678-0
Loading
/content/journal/jgv/10.1099/vir.0.82678-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error