1887

Abstract

The immunopathogenesis of dengue haemorrhagic fever and dengue shock syndrome is thought to be mediated by a variety of host factors. Enhancing antibodies are one of the key regulating molecules. These antibodies, via antibody-dependent enhancement (ADE) of infection, are able to facilitate dengue virus (DENV) growth in Fc-bearing host cells. The mechanism of ADE-enhanced DENV production is believed to be mediated through increasing the infected-cell mass. In the present work, the effect of ADE infection was explored further, focusing on the post-entry events of ADE infection. It was hypothesized that the higher virus production in ADE infection compared with DENV infection may be due to the ability of this infection pathway to suppress key antiviral molecules. Therefore, the influence of ADE infection on pro- and anti-inflammatory cytokines, including interleukin-12 (IL-12), gamma interferon (IFN-), tumour necrosis factor alpha (TNF-), IL-6 and IL-10, was investigated and it was found that DENV infection via the Fc receptor-mediated pathway was able to suppress the transcription and translation of IL-12, IFN- and TNF-. In contrast, infection via this route facilitated expression and synthesis of the anti-inflammatory cytokines IL-6 and IL-10. Moreover, this study demonstrates that the ADE infection pathway also suppresses an innate anti-DENV mediator, nitric oxide radicals, by disrupting the transcription of the iNOS gene transcription factor, IRF-1, and blocking the activation of STAT-1. In conclusion, ADE infection not only facilitates the entry process, but also modifies innate and adaptive intracellular antiviral mechanisms, resulting in unrestricted DENV replication in THP-1 cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82537-0
2007-02-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/2/365.html?itemId=/content/journal/jgv/10.1099/vir.0.82537-0&mimeType=html&fmt=ahah

References

  1. Akaike T., Maeda H. 2000; Nitric oxide and virus infection. Immunology 101:300–308 [CrossRef]
    [Google Scholar]
  2. Akerstrom S., Mousavi-Jazi M., Klingstrom J., Leijon M., Lundkvist A., Mirazimi A. 2005; Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J Virol 79:1966–1969 [CrossRef]
    [Google Scholar]
  3. Alleva D. G., Johnson E. B., Lio F. M., Boehme S. A., Conlon P. J., Crowe P. D. 2002; Regulation of murine macrophage proinflammatory and anti-inflammatory cytokines by ligands for peroxisome proliferator-activated receptor-gamma: counter-regulatory activity by IFN-gamma. J Leukoc Biol 71:677–685
    [Google Scholar]
  4. Atrasheuskaya A., Petzelbauer P., Fredeking T. M., Ignatyev G. 2003; Anti-TNF antibody treatment reduces mortality in experimental dengue virus infection. FEMS Immunol Med Microbiol 35:33–42 [CrossRef]
    [Google Scholar]
  5. Bashyam H. S., Green S., Rothman A. L. 2006; Dengue virus-reactive CD8+ T cells display quantitative and qualitative differences in their response to variant epitopes of heterologous viral serotypes. J Immunol 176:2817–2824 [CrossRef]
    [Google Scholar]
  6. Benz D., Cadet P., Mantione K., Zhu W., Stefano G. 2002; Tonal nitric oxide and health: anti-bacterial and -viral actions and implications for HIV. Med Sci Monit 8:RA27–RA31
    [Google Scholar]
  7. Berlato C., Cassatella M. A., Kinjyo I., Gatto L., Yoshimura A., Bazzoni F. 2002; Involvement of suppressor of cytokine signaling-3 as a mediator of the inhibitory effects of IL-10 on lipopolysaccharide-induced macrophage activation. J Immunol 168:6404–6411 [CrossRef]
    [Google Scholar]
  8. Bogdan C. 2001; Nitric oxide and the immune response. Nat Immunol 2:907–916 [CrossRef]
    [Google Scholar]
  9. Butrapet S., Huang C. Y., Pierro D. J., Bhamarapravati N., Gubler D. J., Kinney R. M. 2000; Attenuation markers of a candidate dengue type 2 vaccine virus, strain 16681 (PDK-53), are defined by mutations in the 5′ noncoding region and nonstructural proteins 1 and 3. J Virol 74:3011–3019 [CrossRef]
    [Google Scholar]
  10. Cao W., Baniecki M. L., McGrath W. J., Bao C., Deming C. B., Rade J. J., Lowenstein C. J., Mangel W. F. 2003; Nitric oxide inhibits the adenovirus proteinase in vitro and viral infectivity in vivo. FASEB J 17:2345–2346
    [Google Scholar]
  11. Charnsilpa W., Takhampunya R., Endy T. P., Mammen M. P. Jr, Libraty D. H., Ubol S. 2005; Nitric oxide radicals suppress replication of wild-type dengue 2 viruses in vitro. J Med Virol 77:89–95 [CrossRef]
    [Google Scholar]
  12. Chaturvedi U. C., Agarwal R., Elbishbishi E. A., Mustafa A. S. 2000; Cytokine cascade in dengue hemorrhagic fever: implications for pathogenesis. FEMS Immunol Med Microbiol 28:183–188 [CrossRef]
    [Google Scholar]
  13. Chen Y. C., Wang S. Y., King C. C. 1999; Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism. J Virol 73:2650–2657
    [Google Scholar]
  14. Chen L. C., Lei H. Y., Liu C. C., Shiesh S. C., Chen S. H., Liu H. S., Lin Y. S., Wang S. T., Shyu H. W., Yeh T. M. 2006; Correlation of serum levels of macrophage migration inhibitory factor with disease severity and clinical outcome in dengue patients. Am J Trop Med Hyg 74:142–147
    [Google Scholar]
  15. da Fonseca B. A., Fonseca S. N. 2002; Dengue virus infections. Curr Opin Pediatr 14:67–71 [CrossRef]
    [Google Scholar]
  16. Gubler D. J. 1998; Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11:480–496
    [Google Scholar]
  17. Ho L. J., Hung L. F., Weng C. Y., Wu W. L., Chou P., Lin Y. L., Chang D. M., Tai T. Y., Lai J. H. 2005; Dengue virus type 2 antagonizes IFN- α but not IFN- γ antiviral effect via down-regulating Tyk2-STAT signaling in the human dendritic cell. J Immunol 174:8163–8172 [CrossRef]
    [Google Scholar]
  18. Houng H. H., Hritz D., Kanesa-thasan N. 2000; Quantitative detection of dengue 2 virus using fluorogenic RT-PCR based on 3′-noncoding sequence. J Virol Methods 86:1–11 [CrossRef]
    [Google Scholar]
  19. Jarasch N., Martin U., Kamphausen E., Zell R., Wutzler P., Henke A. 2005; Interferon-gamma-induced activation of nitric oxide-mediated antiviral activity of macrophages caused by a recombinant coxsackievirus B3. Viral Immunol 18:355–364 [CrossRef]
    [Google Scholar]
  20. Jindadamrongwech S., Thepparit C., Smith D. R. 2004; Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 149:915–927 [CrossRef]
    [Google Scholar]
  21. Kliks S. C., Nimmanitya S., Nisalak A., Burke D. S. 1988; Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am J Trop Med Hyg 38:411–419
    [Google Scholar]
  22. Kliks S. C., Nisalak A., Brandt W. E., Wahl L., Burke D. S. 1989; Antibody-dependent enhancement of dengue virus growth in human monocytes as a risk factor for dengue hemorrhagic fever. Am J Trop Med Hyg 40:444–451
    [Google Scholar]
  23. Klimstra W. B., Williams J. C., Ryman K. D., Heidner H. W. 2005; Targeting Sindbis virus-based vectors to Fc receptor-positive cell types. Virology 338:9–21 [CrossRef]
    [Google Scholar]
  24. Kuno G., Gomez I., Gubler D. J. 1991; An ELISA procedure for the diagnosis of dengue infections. J Virol Methods 33:101–113 [CrossRef]
    [Google Scholar]
  25. Lanciotti R. S., Calisher C. H., Gubler D. J., Chang G. J., Vorndam A. V. 1992; Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol 30:545–551
    [Google Scholar]
  26. Lei H. Y., Yeh T. M., Liu H. S., Lin Y. S., Chen S. H., Liu C. C. 2001; Immunopathogenesis of dengue virus infection. J Biomed Sci 8:377–388 [CrossRef]
    [Google Scholar]
  27. Ligon B. L. 2005; Dengue fever and dengue hemorrhagic fever: a review of the history, transmission, treatment, and prevention. Semin Pediatr Infect Dis 16:60–65 [CrossRef]
    [Google Scholar]
  28. Lin C. F., Lei H. Y., Shiau A. L., Liu H. S., Yeh T. M., Chen S. H., Liu C. C., Chiu S. C., Lin Y. S. 2002; Endothelial cell apoptosis induced by antibodies against dengue virus nonstructural protein 1 via production of nitric oxide. J Immunol 169:657–664 [CrossRef]
    [Google Scholar]
  29. Mahalingam S., Lidbury B. A. 2002; Suppression of lipopolysaccharide-induced antiviral transcription factor (STAT-1 and NF-kappa B) complexes by antibody-dependent enhancement of macrophage infection by Ross River virus. Proc Natl Acad Sci U S A 99:13819–13824 [CrossRef]
    [Google Scholar]
  30. Matsuura M., Saito S., Hirai Y., Okamura H. 2003; A pathway through interferon-gamma is the main pathway for induction of nitric oxide upon stimulation with bacterial lipopolysaccharide in mouse peritoneal cells. Eur J Biochem 270:4016–4025 [CrossRef]
    [Google Scholar]
  31. Mongkolsapaya J., Dejnirattisai W., Xu X. N., Vasanawathana S., Tangthawornchaikul N., Chairunsri A., Sawasdivorn S., Duangchinda T., Dong T. other authors 2003; Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med 9:921–927 [CrossRef]
    [Google Scholar]
  32. Morens D. M., Halstead S. B. 1990; Measurement of antibody-dependent infection enhancement of four dengue virus serotypes by monoclonal and polyclonal antibodies. J Gen Virol 71:2909–2914 [CrossRef]
    [Google Scholar]
  33. Munoz-Jordan J. L., Laurent-Rolle M., Ashour J., Martinez-Sobrido L., Ashok M., Lipkin W. I., Garcia-Sastre A. 2005; Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol 79:8004–8013 [CrossRef]
    [Google Scholar]
  34. Nguyen T. H., Lei H. Y., Nguyen T. L., Lin Y. S., Huang K. J., Le B. L., Lin C. F., Yeh T. M., Do Q. H. other authors 2004; Dengue hemorrhagic fever in infants: a study of clinical and cytokine profiles. J Infect Dis 189:221–232 [CrossRef]
    [Google Scholar]
  35. Raghupathy R., Chaturvedi U. C., Al-Sayer H., Elbishbishi E. A., Agarwal R., Nagar R., Kapoor S., Misra A., Mathur A. other authors 1998; Elevated levels of IL-8 in dengue hemorrhagic fever. J Med Virol 56:280–285 [CrossRef]
    [Google Scholar]
  36. Reyes-Del Valle J., Chavez-Salinas S., Medina F., Del Angel R. M. 2005; Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79:4557–4567 [CrossRef]
    [Google Scholar]
  37. Rothman A. L. 2003; Immunology and immunopathogenesis of dengue disease. Adv Virus Res 60:397–419
    [Google Scholar]
  38. Rothman A. L. 2004; Dengue: defining protective versus pathologic immunity. J Clin Invest 113:946–951 [CrossRef]
    [Google Scholar]
  39. Rulli N. E., Suhrbier A., Hueston L., Heise M. T., Tupanceska D., Zaid A., Wilmes A., Gilmore K., Lidbury B. A., Mahalingam S. 2005; Ross River virus: molecular and cellular aspects of disease pathogenesis. Pharmacol Ther 107:329–342 [CrossRef]
    [Google Scholar]
  40. Shresta S., Kyle J. L., Snider H. M., Basavapatna M., Beatty P. R., Harris E. 2004; Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol 78:2701–2710 [CrossRef]
    [Google Scholar]
  41. Sosroseno W., Barid I., Herminajeng E., Susilowati H. 2002; Nitric oxide production by a murine macrophage cell line (RAW264.7) stimulated with lipopolysaccharide from Actinobacillus actinomycetemcomitans . Oral Microbiol Immunol 17:72–78 [CrossRef]
    [Google Scholar]
  42. Sullivan N. J. 2001; Antibody-mediated enhancement of viral disease. Curr Top Microbiol Immunol 260:145–169
    [Google Scholar]
  43. Takhampunya R., Padmanabhan R., Ubol S. 2006; Antiviral action of nitric oxide on dengue virus type 2 replication. J Gen Virol 87:3003–3011 [CrossRef]
    [Google Scholar]
  44. Tassaneetrithep B., Burgess T. H., Granelli-Piperno A., Trumpfheller C., Finke J., Sun W., Eller M. A., Pattanapanyasat K., Sarasombath S. other authors 2003; DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197:823–829 [CrossRef]
    [Google Scholar]
  45. Trischmann H., Davis D., Lachmann P. J. 1995; Lymphocytotropic strains of HIV type 1 when complexed with enhancing antibodies can infect macrophages via Fc gamma RIII, independently of CD4. AIDS Res Hum Retroviruses 11:343–352 [CrossRef]
    [Google Scholar]
  46. Ubol S., Sukwattanapan C., Utaisincharoen P. 1998; Rabies virus replication induces Bax-related, caspase dependent apoptosis in mouse neuroblastoma cells. Virus Res 56:207–215 [CrossRef]
    [Google Scholar]
  47. Utaisincharoen P., Anuntagool N., Arjcharoen S., Limposuwan K., Chaisuriya P., Sirisinha S. 2004; Induction of iNOS expression and antimicrobial activity by interferon (IFN)-beta is distinct from IFN-gamma in Burkholderia pseudomallei -infected mouse macrophages. Clin Exp Immunol 136:277–283 [CrossRef]
    [Google Scholar]
  48. Valero N., Espina L. M., Anez G., Torres E., Mosquera J. A. 2002; Short report: increased level of serum nitric oxide in patients with dengue. Am J Trop Med Hyg 66:762–764
    [Google Scholar]
  49. Wu S. J., Grouard-Vogel G., Sun W., Mascola J. R., Brachtel E., Putvatana R., Louder M. K., Filgueira L., Marovich M. A. other authors 2000; Human skin Langerhans cells are targets of dengue virus infection. Nat Med 6:816–820 [CrossRef]
    [Google Scholar]
  50. Yang K. D., Yeh W. T., Yang M. Y., Chen R. F., Shaio M. F. 2001; Antibody-dependent enhancement of heterotypic dengue infections involved in suppression of IFNgamma production. J Med Virol 63:150–157 [CrossRef]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.82537-0
Loading
/content/journal/jgv/10.1099/vir.0.82537-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error