1887

Abstract

Transcriptional regulation of the human immunodeficiency virus type 1 (HIV-1) is a complex event that requires the cooperative action of both viral (e.g. Tat) and cellular (e.g. C/EBP, NF-B) factors. The HIV-1 Tat protein recruits the human positive transcription elongation factor P-TEFb, consisting of cdk9 and cyclin T1, to the HIV-1 transactivation response (TAR) region. In the absence of TAR, Tat activates the HIV-1 long terminal repeat (LTR) through its association with several cellular factors including C/EBP. C/EBP is a member of the CCAAT/enhancer-binding protein family of transcription factors and has been shown to be a critical transcriptional regulator of HIV-1 LTR. We examined whether Tat–C/EBP association requires the presence of the P-TEFb complex. Using immunoprecipitation followed by Western blot, we demonstrated that C/EBP–cyclin T1 association requires the presence of cdk9. Further, due to its instability, cdk9 was unable to physically interact with C/EBP in the absence of cyclin T1 or Tat. Using kinase assays, we demonstrated that cdk9, but not a cdk9 dominant-negative mutant (cdk9-dn), phosphorylates C/EBP. Our functional data show that co-transfection of C/EBP and cdk9 leads to an increase in HIV-1 gene expression when compared to C/EBP alone. Addition of C/EBP homologous protein (CHOP) inhibits C/EBP transcriptional activity in the presence and absence of cdk9 and causes a delay in HIV-1 replication in T-cells. Together, our data suggest that Tat–C/EBP association is mediated through cdk9, and that phosphorylated C/EBP may influence AIDS progression by increasing expression of HIV-1 genes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82487-0
2007-02-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/2/631.html?itemId=/content/journal/jgv/10.1099/vir.0.82487-0&mimeType=html&fmt=ahah

References

  1. Abraham, S., Sweet, T., Sawaya, B. E., Rappaport, J., Khalili, K. & Amini, S. ( 2005; ). Cooperative interaction of C/EBP beta and Tat modulates MCP-1 gene transcription in astrocytes. J Neuroimmunol 160, 219–227.[CrossRef]
    [Google Scholar]
  2. Akira, S., Isshiki, H., Sugita, T., Tanabe, O., Kinoshita, S., Nishio, Y., Nakajima, T., Hirano, T. & Kishimoto, T. ( 1990; ). A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J 9, 1897–1906.
    [Google Scholar]
  3. Amini, S., Clavo, A., Nadraga, Y., Giordano, A., Khalili, K. & Sawaya, B. E. ( 2002; ). Interplay between cdk9 and NF-kappaB factors determines the level of HIV-1 gene transcription in astrocytic cells. Oncogene 21, 5797–5803.[CrossRef]
    [Google Scholar]
  4. Amini, S., Saunders, M., Kelley, K., Khalili, K. & Sawaya, B. E. ( 2004; ). Interplay between HIV-1 Vpr and Sp1 modulates p21(WAF1) gene expression in human astrocytes. J Biol Chem 279, 46046–46056.[CrossRef]
    [Google Scholar]
  5. An, M. R., Hsieh, C. C., Reisner, P. D., Rabek, J. P., Scott, S. G., Kuninger, D. T. & Papaconstantinou, J. ( 1996; ). Evidence for posttranscriptional regulation of C/EBPalpha and C/EBPbeta isoform expression during the lipopolysaccharide-mediated acute-phase response. Mol Cell Biol 16, 2295–2306.
    [Google Scholar]
  6. Ayer, D. E., Kretzner, L. & Eisenman, R. N. ( 1993; ). Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72, 211–222.[CrossRef]
    [Google Scholar]
  7. Blackwood, E. M. & Eisenman, N. R. ( 1991; ). Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211–1217.[CrossRef]
    [Google Scholar]
  8. Brady, J. & Kashanchi, F. ( 2005; ). Tat gets the ‘green’ light on transcription initiation. Retrovirology 2, 69.[CrossRef]
    [Google Scholar]
  9. Buck, M., Poli, V., Hunter, T. & Chojkier, M. ( 2001; ). C/EBPbeta phosphorylation by RSK creates a functional XEXD caspase inhibitory box critical for cell survival. Mol Cell 8, 807–816.[CrossRef]
    [Google Scholar]
  10. Cao, Z., Umek, R. M. & McKnight, S. L. ( 1991; ). Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev 5, 1538–1552.[CrossRef]
    [Google Scholar]
  11. Chen, R., Yang, Z. & Zhou, Q. ( 2004; ). Phosphorylated positive transcription elongation factor b (P-TEFb) is tagged for inhibition through association with 7SK snRNA. J Biol Chem 279, 4153–4160.
    [Google Scholar]
  12. Claudio, P. P., Cui, J., Ghafouri, M., Mariano, C., White, M. K., Safak, M., Sheffield, J. B., Giordano, A., Khalili, K. & other authors ( 2006; ). Cdk9 phosphorylates p53 on serine 392 independently of CKII. J Cell Physiol 208, 602–612.[CrossRef]
    [Google Scholar]
  13. Coyle-Rink, J., Sweet, T., Abraham, S., Sawaya, B., Batuman, O., Khalili, K. & Amini, S. ( 2002; ). Interaction between TGFbeta signaling proteins and C/EBP controls basal and Tat-mediated transcription of HIV-1 LTR in astrocytes. Virology 299, 240–247.[CrossRef]
    [Google Scholar]
  14. Dang, C. V., Dolde, C., Gillison, M. C. & Kato, G. J. ( 1992; ). Discrimination between related DNA sites by a single amino acid residue of Myc-related basic-helix-loop-helix proteins. Proc Natl Acad Sci U S A 89, 599–602.[CrossRef]
    [Google Scholar]
  15. De Falco, G., Bagella, L., Claudio, P. P., De Luca, A., Fu, Y., Calabretta, B., Sala, A. & Giordano, A. ( 2000; ). Physical interaction between CDK9 and B-Myb results in suppression of B-Myb gene autoregulation. Oncogene 19, 373–379.[CrossRef]
    [Google Scholar]
  16. Descombes, P. & Schibler, U. ( 1991; ). A liver-enriched transcriptional activator protein, LAP, and transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 67, 569–579.[CrossRef]
    [Google Scholar]
  17. Falco, G. D., Neri, L. M., Falco, M. D., Bellan, C., Yu, Z., Luca, A. D., Leoncini, L. & Giordano, A. ( 2002; ). Cdk9, a member of the cdc2-like family of kinases, binds to gp130, the receptor of the IL-6 family of cytokines. Oncogene 21, 7464–7470.[CrossRef]
    [Google Scholar]
  18. Fraldi, A., Varrone, F., Napolitano, G., Michels, A. A., Majello, B., Bensaude, O. & Lania, L. ( 2005; ). Inhibition of Tat activity by the HEXIM1 protein. Retrovirology 2, 42.[CrossRef]
    [Google Scholar]
  19. Gao, H., Parkin, S., Johnson, P. F. & Schwartz, R. C. ( 2002; ). C/EBP gamma has a stimulatory role on the IL-6 and IL-8 promoters. J Biol Chem 277, 38827–38837.[CrossRef]
    [Google Scholar]
  20. Garber, M. E., Wei, P., KewalRamani, V. N., Mayall, T. P., Herrmann, C. H., Rice, A. P., Littman, D. R. & Jones, K. A. ( 1998; ). The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev 12, 3512–3527.[CrossRef]
    [Google Scholar]
  21. Garriga, J. & Graña, X. ( 2004; ). Cellular control of gene expression by T-type cyclin/CDK9 complexes. Gene 337, 15–23.[CrossRef]
    [Google Scholar]
  22. Ghafouri, M., Amini, S., Khalili, K. & Sawaya, B. E. ( 2006; ). HIV-1 associated dementia: symptoms and causes. Retrovirology 3, 28.[CrossRef]
    [Google Scholar]
  23. Graña, X., De Luca, A., Sang, N., Fu, Y., Claudio, P. P., Rosenblatt, J., Morgan, D. O. & Giordano, A. ( 1994; ). PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro. Proc Natl Acad Sci U S A 91, 3834–3838.[CrossRef]
    [Google Scholar]
  24. Henderson, A. J. & Calame, K. L. ( 1997; ). CCAAT/enhancer binding protein (C/EBP) sites are required for HIV-1 replication in primary macrophages but not CD4(+) T cells. Proc Natl Acad Sci U S A 94, 8714–8719.[CrossRef]
    [Google Scholar]
  25. Henderson, A. J., Zou, X. & Calame, K. L. ( 1995; ). C/EBP proteins activate transcription from the human immunodeficiency virus type 1 long terminal repeat in macrophages/monocytes. J Virol 69, 5337–5344.
    [Google Scholar]
  26. Hogan, T. H., Nonnemacher, M. R., Krebs, F. C., Henderson, A. & Wigdahl, B. ( 2003; ). HIV-1 Vpr binding to HIV-1 LTR C/EBP cis-acting elements and adjacent regions is sequence-specific. Biomed Pharmacother 57, 41–48.[CrossRef]
    [Google Scholar]
  27. Hohaus, S., Petrovick, M. S., Voso, M. T., Sun, Z., Zhang, D. E. & Tenen, D. G. ( 1995; ). PU.1 (Spi-1) and C/EBP alpha regulate expression of the granulocyte-macrophage colony-stimulating factor receptor alpha gene. Mol Cell Biol 15, 5830–5845.
    [Google Scholar]
  28. Jeffrey, P. D., Russo, A. A., Polyak, K., Gibbs, E., Hurwitz, J., Massague, J. & Pavletich, N. P. ( 1995; ). Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376, 313–320.[CrossRef]
    [Google Scholar]
  29. Kowenz-Leutz, E., Twamley, G., Ansieau, S. & Leutz, A. ( 1994; ). Novel mechanism of C/EBP beta (NF-M) transcriptional control: activation through derepression. Genes Dev 8, 2781–2791.[CrossRef]
    [Google Scholar]
  30. Lee, E. S., Zhou, H. & Henderson, A. J. ( 2001; ). Endothelial cells enhance human immunodeficiency virus type 1 replication in macrophages through a C/EBP-dependent mechanism. J Virol 75, 9703–9712.[CrossRef]
    [Google Scholar]
  31. Lekstrom-Himes, J. & Xanthopoulos, K. G. ( 1998; ). Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J Biol Chem 273, 28545–28548.[CrossRef]
    [Google Scholar]
  32. Liou, L. Y., Herrmann, C. H. & Rice, A. P. ( 2004; ). Human immunodeficiency virus type 1 infection induces cyclin T1 expression in macrophages. J Virol 78, 8114–8119.[CrossRef]
    [Google Scholar]
  33. MacLachlan, T. K., Sang, N., De Luca, A., Puri, P. L., Levrero, M. & Giordano, A. ( 1998; ). Binding of CDK9 to TRAF2. J Cell Biochem 71, 467–478.[CrossRef]
    [Google Scholar]
  34. Marshall, R. M. & Graña, X. ( 2006; ). Mechanisms controlling CDK9 activity. Front Biosci 11, 2598–2613.[CrossRef]
    [Google Scholar]
  35. Michael, N. L., D'Arcy, L., Ehrenberg, P. K. & Redfield, R. R. ( 1994; ). Naturally occurring genotypes of the human immunodeficiency virus type 1 long terminal repeat display a wide range of basal and Tat-induced transcriptional activities. J Virol 68, 3163–3174.
    [Google Scholar]
  36. Michels, A. A., Fraldi, A., Li, Q., Adamson, T. E., Bonnet, F., Nguyen, V. T., Sedore, S. C., Price, J. P., Price, D. H. & other authors ( 2004; ). Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. EMBO J 23, 2608–2619.[CrossRef]
    [Google Scholar]
  37. Murre, C., McCaw, P. S., Vaessin, H., Caudy, M., Jan, L. Y., Jan, Y. N., Cabrera, C. V., Buskin, J. N., Hauschka, S. D. & other authors ( 1989; ). Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58, 537–544.[CrossRef]
    [Google Scholar]
  38. Nakajima, T., Kinoshita, S., Sasagawa, T., Sasaki, K., Naruto, M., Kishimoto, T. & Akira, S. ( 1993; ). Phosphorylation at threonine-235 by a ras-dependent mitogen-activated protein kinase cascade is essential for transcription factor NF-IL6. Proc Natl Acad Sci U S A 90, 2207–2211.[CrossRef]
    [Google Scholar]
  39. Nerlov, C. & Ziff, E. B. ( 1995; ). CCAAT/enhancer binding protein-alpha amino acid motifs with dual TBP and TFIIB binding ability co-operate to activate transcription in both yeast and mammalian cells. EMBO J 14, 4318–4328.
    [Google Scholar]
  40. Nguyen, V. T., Kiss, T., Michels, A. A. & Bensaude, O. ( 2001; ). 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414, 322–325.[CrossRef]
    [Google Scholar]
  41. Pei, Y., Schwer, B. & Shuman, S. ( 2003; ). Interactions between fission yeast Cdk9, its cyclin partner Pch1, and mRNA capping enzyme Pct1 suggest an elongation checkpoint for mRNA quality control. J Biol Chem 278, 7180–7188.[CrossRef]
    [Google Scholar]
  42. Peruzzi, F. ( 2006; ). The multiple functions of HIV-1 Tat: proliferation versus apoptosis. Front Biosci 11, 708–717.[CrossRef]
    [Google Scholar]
  43. Peterlin, B. M. & Price, D. H. ( 2006; ). Controlling the elongation phase of transcription with P-TEFb. Mol Cell 23, 297–305.[CrossRef]
    [Google Scholar]
  44. Pines, J. ( 1994; ). The cell cycle kinases. Semin Cancer Biol 5, 305–313.
    [Google Scholar]
  45. Poli, V., Mancini, F. P. & Cortese, R. ( 1990; ). IL-6DBP, a nuclear protein involved in interleukin-6 signal transduction, defines a new family of leucine zipper proteins related to C/EBP. Cell 63, 643–653.[CrossRef]
    [Google Scholar]
  46. Pope, R. M., Leutz, A. & Ness, S. A. ( 1994; ). C/EBP beta regulation of the tumor necrosis factor alpha gene. J Clin Invest 94, 1449–1455.[CrossRef]
    [Google Scholar]
  47. Ramji, D. P. & Foka, P. ( 2002; ). CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 365, 561–575.
    [Google Scholar]
  48. Roman, C., Platero, J. S., Shuman, J. & Calame, K. ( 1990; ). Ig/EBP-1: a ubiquitously expressed immunoglobulin enhancer binding protein that is similar to C/EBP and heterodimerizes with C/EBP. Genes Dev 4, 1404–1415.[CrossRef]
    [Google Scholar]
  49. Ron, D. & Habener, J. F. ( 1992; ). CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev 6, 439–453.[CrossRef]
    [Google Scholar]
  50. Rossi, A., Mukerjee, R., Ferrante, P., Khalili, K., Amini, S. & Sawaya, B. E. ( 2006; ). Human immunodeficiency virus type 1 Tat prevents dephosphorylation of Sp1 by TCF-4 in astrocytes. J Gen Virol 87, 1613–1623.[CrossRef]
    [Google Scholar]
  51. Ruocco, M. R., Chen, X., Ambrosino, C., Dragonetti, E., Liu, W., Mallardo, M., De Falco, G., Palmieri, C., Franzoso, G. & other authors ( 1996; ). Regulation of HIV-1 long terminal repeats by interaction of C/EBP(NF-IL6) and NF-kappaB/Rel transcription factors. J Biol Chem 271, 22479–22486.[CrossRef]
    [Google Scholar]
  52. Sawaya, B. E., Khalili, K., Gordon, J., Taube, R. & Amini, S. ( 2000; ). Cooperative interaction between HIV-1 regulatory proteins Tat and Vpr modulates transcription of the viral genome. J Biol Chem 275, 35209–35214.[CrossRef]
    [Google Scholar]
  53. Sebastian, T. & Johnson, P. F. ( 2006; ). Stop and go: anti-proliferative and mitogenic functions of the transcription factor C/EBPbeta. Cell Cycle 5, 953–957.[CrossRef]
    [Google Scholar]
  54. Sekine, O., Nishio, Y., Egawa, K., Nakamura, T., Maegawa, H. & Kashiwagi, A. ( 2002; ). Insulin activates CCAAT/enhancer binding proteins and proinflammatory gene expression through the phosphatidylinositol 3-kinase pathway in vascular smooth muscle cells. J Biol Chem 277, 36631–36639.[CrossRef]
    [Google Scholar]
  55. Shirakawa, K., Maeda, S., Gotoh, T., Hayashi, M., Shinomiya, K., Ehata, S., Nishimura, R., Mori, M., Onozaki, K. & other authors ( 2006; ). CCAAT/enhancer-binding protein homologous protein (CHOP) regulates osteoblast differentiation. Mol Cell Biol 26, 6105–6116.[CrossRef]
    [Google Scholar]
  56. Simone, C., Stiegler, P., Bagella, L., Pucci, B., Bellan, C., De Falco, G., De Luca, A., Guanti, G., Puri, P. L. & Giordano, A. ( 2002; ). Activation of MyoD-dependent transcription by cdk9/cyclin T2. Oncogene 21, 4137–4148.[CrossRef]
    [Google Scholar]
  57. Spooner, C. J., Guo, X., Johnson, P. F. & Schwartz, R. C. ( 2007; ). Differential roles of C/EBP beta regulatory domains in specifying MCP-1 and IL-6 transcription. Mol Immunol 44, 1384–1392.[CrossRef]
    [Google Scholar]
  58. Wei, P., Garber, M. E., Fang, S. M., Fischer, W. H. & Jones, K. A. ( 1998; ). A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92, 451–462.[CrossRef]
    [Google Scholar]
  59. Westendorf, J. J., Yamamoto, C. M., Lenny, N., Downing, J. R., Selsted, M. E. & Hiebert, S. W. ( 1998; ). The t(8;21) fusion product, AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Mol Cell Biol 18, 322–333.
    [Google Scholar]
  60. Yik, J. H., Chen, R., Pezda, A. C., Samford, C. S. & Zhou, Q. ( 2004; ). A human immunodeficiency virus type 1 Tat-like arginine-rich RNA-binding domain is essential for HEXIM1 to inhibit RNA polymerase II transcription through 7SK snRNA-mediated inactivation of P-TEFb. Mol Cell Biol 24, 5094–5105.[CrossRef]
    [Google Scholar]
  61. Yin, M., Yang, S. Q., Lin, H. Z., Lane, M. D., Chatterjee, S. & Diehl, A. M. ( 1996; ). Tumor necrosis factor alpha promotes nuclear localization of cytokine-inducible CCAAT/enhancer binding protein isoforms in hepatocytes. J Biol Chem 271, 17974–17978.[CrossRef]
    [Google Scholar]
  62. Yu, W., Wang, Y., Shaw, C. A., Qin, X. F. & Rice, A. P. ( 2006; ). Induction of the HIV-1 Tat co-factor cyclin T1 during monocyte differentiation is required for the regulated expression of a large portion of cellular mRNAs. Retrovirology 3, 32.[CrossRef]
    [Google Scholar]
  63. Zhang, Y., Nakata, K., Weiden, M. & Rom, W. N. ( 1995; ). Mycobacterium tuberculosis enhances human immunodeficiency virus-1 replication by transcriptional activation at the long terminal repeat. J Clin Invest 95, 2324–2331.[CrossRef]
    [Google Scholar]
  64. Zhang, W., Hirshberg, M., McLaughlin, S. H., Lazar, G. A., Grossmann, J. G., Nielsen, P. R., Sobott, F., Robinson, C. V., Jackson, S. E. & Laue, E. D. ( 2004; ). Biochemical and structural studies of the interaction of Cdc37 with Hsp90. J Mol Biol 340, 891–907.[CrossRef]
    [Google Scholar]
  65. Zhu, Y., Pe'ery, T., Peng, J., Ramanathan, Y., Marshall, N., Marshall, T., Amendt, B., Mathews, M. B. & Price, D. H. ( 1997; ). Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev 11, 2622–2632.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82487-0
Loading
/content/journal/jgv/10.1099/vir.0.82487-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error