1887

Abstract

(NiV) and (HeV) are newly identified members of the family and have been classified in the new genus based on unique genetic characteristics distinct from other paramyxoviruses. Transgenic cell lines were generated that expressed either the attachment protein (G) or the fusion protein (F) of NiV. Functional expression of NiV F and G was verified by complementation with the corresponding glycoprotein, which resulted in the development of syncytia. When exposed to NiV and HeV, expression of NiV G in Crandall feline kidney cells resulted in a qualitative inhibition of both cytopathic effect (CPE) and cell death by both viruses. RT-PCR analysis of surviving exposed cells showed a complete absence of viral positive-sense mRNA and genomic negative-sense viral RNA. Cells expressing NiV G were also unable to fuse with cells co-expressing NiV F and G in a fluorescent fusion inhibition assay. Cell-surface staining for the cellular receptors for NiV and HeV (ephrin-B2 and ephrin-B3) indicated that they were located on the surface of cells, regardless of NiV G expression or infection by NiV. These results indicated that viral interference can be established for henipaviruses and requires only the expression of the attachment protein, G. Furthermore, it was found that this interference probably occurs at the level of virus entry, as fusion was not observed in cells expressing NiV G. Finally, expression of NiV G by either transient transfection or NiV infection did not alter the cell-surface levels of the two known viral receptors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82427-0
2007-02-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/2/582.html?itemId=/content/journal/jgv/10.1099/vir.0.82427-0&mimeType=html&fmt=ahah

References

  1. Anonymous ( 2003; ). Outbreaks of encephalitis due to Nipah/Hendra-like viruses, Western Bangladesh. Health Sci Bull 1, 1–6.
    [Google Scholar]
  2. Bagai, S. & Lamb, R. A. ( 1995; ). Quantitative measurement of paramyxovirus fusion: differences in requirements of glycoproteins between simian virus 5 and human parainfluenza virus 3 or Newcastle disease virus. J Virol 69, 6712–6719.
    [Google Scholar]
  3. Bar-Lev Stern, L., Greenberg, M., Gershoni, J. M. & Rozenblatt, S. ( 1995; ). The hemagglutinin envelope protein of canine distemper virus (CDV) confers cell tropism as illustrated by CDV and measles virus complementation analysis. J Virol 69, 1661–1668.
    [Google Scholar]
  4. Bonaparte, M. I., Dimitrov, A. S., Bossart, K. N., Crameri, G., Mungall, B. A., Bishop, K. A., Choudhry, V., Dimitrov, D. S., Wang, L.-F. & other authors ( 2005; ). Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc Natl Acad Sci U S A 102, 10652–10657.[CrossRef]
    [Google Scholar]
  5. Bossart, K. N., Wang, L.-F., Eaton, B. T. & Broder, C. C. ( 2001; ). Functional expression and membrane fusion tropism of the envelope glycoproteins of Hendra virus. Virology 290, 121–135.[CrossRef]
    [Google Scholar]
  6. Bossart, K. N., Wang, L.-F., Flora, M. N., Chua, K. B., Lam, S. K., Eaton, B. T. & Broder, C. C. ( 2002; ). Membrane fusion tropism and heterotypic functional activities of the Nipah virus and Hendra virus envelope glycoproteins. J Virol 76, 11186–11198.[CrossRef]
    [Google Scholar]
  7. Bossart, K. N., Crameri, G., Dimitrov, A. S., Mungall, B. A., Feng, Y. R., Patch, J. R., Choudhary, A., Wang, L. F., Eaton, B. T. & Broder, C. C. ( 2005; ). Receptor binding, fusion inhibition, and induction of cross-reactive neutralizing antibodies by a soluble G glycoprotein of Hendra virus. J Virol 79, 6690–6702.[CrossRef]
    [Google Scholar]
  8. Bousse, T., Takimoto, T., Gorman, W. L., Takahashi, T. & Portner, A. ( 1994; ). Regions on the hemagglutinin-neuraminidase proteins of human parainfluenza virus type-1 and Sendai virus important for membrane fusion. Virology 204, 506–514.[CrossRef]
    [Google Scholar]
  9. Breiner, K. M., Urban, S., Glass, B. & Schaller, H. ( 2001; ). Envelope protein-mediated down-regulation of hepatitis B virus receptor in infected hepatocytes. J Virol 75, 143–150.[CrossRef]
    [Google Scholar]
  10. Butler, D. ( 2004; ). Fatal fruit bat virus sparks epidemics in southern Asia (news). Nature 429, 7.
    [Google Scholar]
  11. Cattaneo, R. & Rose, J. K. ( 1993; ). Cell fusion by the envelope glycoproteins of persistent measles viruses which caused lethal human brain disease. J Virol 67, 1493–1502.
    [Google Scholar]
  12. Chadha, M. S., Comer, J. A., Lowe, L., Rota, P. A., Rollin, P. E., Bellini, W. J., Ksiazek, T. G. & Mishra, A. C. ( 2006; ). Nipah virus-associated encephalitis outbreak, Siliguri, India. Emerg Infect Dis 12, 235–240.[CrossRef]
    [Google Scholar]
  13. Chew, M. H. L., Arguin, P. M., Shay, D. K., Goh, K.-T., Rollin, P. E., Shieh, W.-J., Zaki, S. R., Rota, P. A., Ling, A.-E. & other authors ( 2000; ). Risk factors for Nipah virus infection among abattoir workers in Singapore. J Infect Dis 181, 1760–1763.[CrossRef]
    [Google Scholar]
  14. Chua, K. B., Goh, K. J., Wong, K. T., Kamarulzaman, A., Tan, P. S., Ksiazek, T. G., Zaki, S. R., Paul, G., Lam, S. K. & Tan, C. T. ( 1999; ). Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354, 1257–1259.[CrossRef]
    [Google Scholar]
  15. Chua, K. B., Bellini, W. J., Rota, P. A., Harcourt, B. H., Tamin, A., Lam, S. K., Ksiazek, T. G., Rollin, P. E., Zaki, S. R. & other authors ( 2000; ). Nipah virus: a recently emergent deadly paramyxovirus. Science 288, 1432–1435.[CrossRef]
    [Google Scholar]
  16. Czub, M., McAtee, F. J., Czub, S., Lynch, W. P. & Portis, J. L. ( 1995; ). Prevention of retrovirus-induced neurological disease by infection with a nonneuropathogenic retrovirus. Virology 206, 372–380.[CrossRef]
    [Google Scholar]
  17. Delwart, E. L. & Panganiban, A. T. ( 1989; ). Role of reticuloendotheliosis virus envelope glycoprotein in superinfection interference. J Virol 63, 273–280.
    [Google Scholar]
  18. Ebata, S. N., Côté, M.-J., Kang, C. Y. & Dimock, K. ( 1991; ). The fusion and hemagglutinin-neuraminidase glycoproteins of human parainfluenza virus 3 are both required for fusion. Virology 183, 437–441.[CrossRef]
    [Google Scholar]
  19. Geraghty, R. J., Jogger, C. R. & Spear, P. G. ( 2000; ). Cellular expression of alphaherpesvirus gD interferes with entry of homologous and heterologous alphaherpesviruses by blocking access to a shared gD receptor. Virology 268, 147–158.[CrossRef]
    [Google Scholar]
  20. Halpin, K., Young, P. L., Field, H. E. & Mackenzie, J. S. ( 2000; ). Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. J Gen Virol 81, 1927–1932.
    [Google Scholar]
  21. Heminway, B. R., Yu, Y. & Galinski, M. S. ( 1994; ). Paramyxovirus mediated cell fusion requires co-expression of both the fusion and hemagglutinin-neuraminidase glycoproteins. Virus Res 31, 1–16.[CrossRef]
    [Google Scholar]
  22. Hishiyama, M., Tanabayashi, K., Takeuchi, K. & Yamada, A. ( 1996; ). Establishment of cell lines stably expressing mumps virus glycoproteins. Jpn J Med Sci Biol 49, 29–38.[CrossRef]
    [Google Scholar]
  23. Horga, M.-A., Gusella, G. L., Greengard, O., Poltoratskaia, N., Porotto, M. & Moscona, A. ( 2000; ). Mechanism of interference mediated by human parainfluenza virus type 3 infection. J Virol 74, 11792–11799.[CrossRef]
    [Google Scholar]
  24. Horvath, C. M., Paterson, R. G., Shaughnessy, M. A., Wood, R. & Lamb, R. A. ( 1992; ). Biological activities of paramyxovirus fusion proteins: factors influencing formation of syncytia. J Virol 66, 4564–4569.
    [Google Scholar]
  25. Hsu, V. P., Hossain, M. J., Parashar, U. D., Ali, M. M., Ksiazek, T. G., Kuzmin, I., Niezgoda, M., Rupprecht, C., Bresee, J. & Breiman, R. F. ( 2004; ). Nipah virus encephalitis reemergence, Bangladesh. Emerg Infect Dis 10, 2082–2087.[CrossRef]
    [Google Scholar]
  26. Hu, X. L., Ray, R. & Compans, R. W. ( 1992; ). Functional interactions between the fusion protein and hemagglutinin-neuraminidase of human parainfluenza viruses. J Virol 66, 1528–1534.
    [Google Scholar]
  27. Hunt, H. D., Lee, L. F., Foster, D., Silva, R. F. & Fadly, A. M. ( 1999; ). A genetically engineered cell line resistant to subgroup J avian leukosis virus infection (C/J). Virology 264, 205–210.[CrossRef]
    [Google Scholar]
  28. Kahn, J. S., Schnell, M. J., Buonocore, L. & Rose, J. K. ( 1999; ). Recombinant vesicular stomatitis virus expressing respiratory syncytial virus (RSV) glycoproteins: RSV fusion protein can mediate infection and cell fusion. Virology 254, 81–91.[CrossRef]
    [Google Scholar]
  29. Karpf, A. R., Lenches, E., Strauss, E. G., Strauss, J. H. & Brown, D. T. ( 1997; ). Superinfection exclusion of alphaviruses in three mosquito cell lines persistently infected with Sindbis virus. J Virol 71, 7119–7123.
    [Google Scholar]
  30. Lindemann, D., Pietschmann, T., Picard-Maureau, M., Berg, A., Heinkelein, M., Thurow, J., Knaus, P., Zentgraf, H. & Rethwilm, A. ( 2001; ). A particle-associated glycoprotein signal peptide essential for virus maturation and infectivity. J Virol 75, 5762–5771.[CrossRef]
    [Google Scholar]
  31. Lyu, M. S., Nihrane, A. & Kozak, C. A. ( 1999; ). Receptor-mediated interference mechanism responsible for resistance to polytropic leukemia viruses in Mus castaneus. J Virol 73, 3733–3736.
    [Google Scholar]
  32. Marschall, M., Meier-Ewert, H., Herrler, G., Zimmer, G. & Maassab, H. F. ( 1997; ). The cell receptor level is reduced during persistent infection with influenza C virus. Arch Virol 142, 1155–1164.[CrossRef]
    [Google Scholar]
  33. Mayo, M. A. ( 2002; ). A summary of taxonomic changes recently approved by ICTV. Arch Virol 147, 1655–1656.[CrossRef]
    [Google Scholar]
  34. Middleton, D. J., Westbury, H. A., Morrissy, C. J., van der Heide, B. M., Russell, G. M., Braun, M. A. & Hyatt, A. D. ( 2002; ). Experimental Nipah virus infection in pigs and cats. J Comp Pathol 126, 124–136.[CrossRef]
    [Google Scholar]
  35. Mizuguchi, H., Nakanishi, T., Kondoh, M., Nakagawa, T., Nakanishi, M., Matsuyama, T., Tsutsumi, Y., Nakagawa, S. & Mayumi, T. ( 1999; ). Fusion of Sendai virus with liposome depends on only F protein, but not HN protein. Virus Res 59, 191–201.[CrossRef]
    [Google Scholar]
  36. Morrison, T., McQuain, C. & McGinnes, L. ( 1991; ). Complementation between avirulent Newcastle disease virus and a fusion protein gene expressed from a retrovirus vector: requirements for membrane fusion. J Virol 65, 813–822.
    [Google Scholar]
  37. Mounts, A. W., Kaur, H., Parashar, U. D., Ksiazek, T. G., Cannon, D., Arokiasamy, J. T., Anderson, L. J., Lye, M. S. & Nipah Virus Nosocomial Study Group. ( 2001; ). A cohort study of health care workers to assess nosocomial transmissibility of Nipah virus, Malaysia, 1999. J Infect Dis 183, 810–813.[CrossRef]
    [Google Scholar]
  38. Murray, K., Selleck, P., Hooper, P., Hyatt, A., Gould, A., Gleeson, L., Westbury, H., Hiley, L., Selvey, L. & other authors ( 1995; ). A morbillivirus that caused fatal disease in horses and humans. Science 268, 94–97.[CrossRef]
    [Google Scholar]
  39. Negrete, O. A., Levroney, E. L., Aguilar, H. C., Bertolotti-Ciarlet, A., Nazarian, R., Tajyar, S. & Lee, B. ( 2005; ). EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 436, 401–405.
    [Google Scholar]
  40. Negrete, O. A., Wolf, M. C., Aguilar, H. C., Enterlein, S., Wang, W., Mühlberger, E., Su, S. V., Bertolotti-Ciarlet, A., Flick, R. & Lee, B. ( 2006; ). Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog 2, e7.[CrossRef]
    [Google Scholar]
  41. Nishio, M., Tsurudome, M., Komada, H., Kawano, M., Tabata, N., Matsumura, H., Ikemura, N., Watanabe, N. & Ito, Y. ( 1994; ). Fusion properties of cells constitutively expressing human parainfluenza virus type 4A haemagglutinin-neuraminidase and fusion glycoproteins. J Gen Virol 75, 3517–3523.[CrossRef]
    [Google Scholar]
  42. Parashar, U. D., Sunn, L. M., Ong, F., Mounts, A. W., Arif, M. T., Ksiazek, T. G., Kamaluddin, M. A., Mustafa, A. N., Kaur, H. & other authors ( 2000; ). Case-control study of risk factors for human infection with a new zoonotic paramyxovirus, Nipah virus, during a 1998–1999 outbreak of severe encephalitis in Malaysia. J Infect Dis 181, 1755–1759.[CrossRef]
    [Google Scholar]
  43. Paton, N. I., Leo, Y. S., Zaki, S. R., Auchus, A. P., Lee, K. E., Ling, A. E., Chew, S. K., Ang, B., Rollin, P. E. & other authors ( 1999; ). Outbreak of Nipah-virus infection among abattoir workers in Singapore. Lancet 354, 1253–1256.[CrossRef]
    [Google Scholar]
  44. Philbey, A. W., Kirkland, P. D., Ross, A. D., Davis, R. J., Gleeson, A. B., Love, R. J., Daniels, P. W., Gould, A. R. & Hyatt, A. D. ( 1998; ). An apparently new virus (family Paramyxoviridae) infectious for pigs, humans, and fruit bats. Emerg Infect Dis 4, 269–271.[CrossRef]
    [Google Scholar]
  45. Ponferrada, V. G., Mauck, B. S. & Wooley, D. P. ( 2003; ). The envelope glycoprotein of human endogenous retrovirus HERV-W induces cellular resistance to spleen necrosis virus. Arch Virol 148, 659–675.[CrossRef]
    [Google Scholar]
  46. Potash, M. J. & Volsky, D. J. ( 1998; ). Viral interference in HIV-1 infected cells. Rev Med Virol 8, 203–211.[CrossRef]
    [Google Scholar]
  47. Rogers, R. J., Douglas, I. C., Baldock, F. C., Glanville, R. J., Seppanen, K. T., Gleeson, L. J., Selleck, P. N. & Dunn, K. J. ( 1996; ). Investigation of a second focus of equine morbillivirus infection in coastal Queensland. Aust Vet J 74, 243–244.[CrossRef]
    [Google Scholar]
  48. Sakai, Y. & Shibuta, H. ( 1989; ). Syncytium formation by recombinant vaccinia viruses carrying bovine parainfluenza 3 virus envelope protein genes. J Virol 63, 3661–3668.
    [Google Scholar]
  49. Schneider-Schaulies, J., Dunster, L. M., Kobune, F., Rima, B. & ter Meulen, V. ( 1995a; ). Differential downregulation of CD46 by measles virus strains. J Virol 69, 7257–7259.
    [Google Scholar]
  50. Schneider-Schaulies, J., Schnorr, J.-J., Brinckmann, U., Dunster, L. M., Baczko, K., Liebert, U. G., Schneider-Schaulies, S. & ter Meulen, V. ( 1995b; ). Receptor usage and differential downregulation of CD46 by measles virus wild-type and vaccine strains. Proc Natl Acad Sci U S A 92, 3943–3947.[CrossRef]
    [Google Scholar]
  51. Seth, S. & Shaila, M. S. ( 2001; ). The fusion protein of Peste des petits ruminants virus mediates biological fusion in the absence of hemagglutinin-neuraminidase protein. Virology 289, 86–94.[CrossRef]
    [Google Scholar]
  52. Soneoka, Y., Cannon, P. M., Ramsdale, E. E., Griffiths, J. C., Romano, G., Kingsman, S. M. & Kingsman, A. J. ( 1995; ). A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 23, 628–633.[CrossRef]
    [Google Scholar]
  53. Tamin, A., Harcourt, B. H., Ksiazek, T. G., Rollin, P. E., Bellini, W. J. & Rota, P. A. ( 2002; ). Functional properties of the fusion and attachment glycoproteins of Nipah virus. Virology 296, 190–200.[CrossRef]
    [Google Scholar]
  54. Tanabayashi, K., Takeuchi, K., Okazaki, K., Hishiyama, M. & Yamada, A. ( 1992; ). Expression of mumps virus glycoproteins in mammalian cells from cloned cDNAs: both F and HN proteins are required for cell fusion. Virology 187, 801–804.[CrossRef]
    [Google Scholar]
  55. Weingartl, H., Czub, S., Copps, J., Berhane, Y., Middleton, D., Marszal, P., Gren, J., Smith, G., Ganske, S. & other authors ( 2005; ). Invasion of the central nervous system in a porcine host by Nipah virus. J Virol 79, 7528–7534.[CrossRef]
    [Google Scholar]
  56. Weingartl, H. M., Berhane, Y., Caswell, J. L., Loosmore, S., Audonnet, J.-C., Roth, J. A. & Czub, M. ( 2006; ). Recombinant Nipah virus vaccines protect pigs against challenge. J Virol 80, 7929–7938.[CrossRef]
    [Google Scholar]
  57. Welstead, G. G., Hsu, E. C., Iorio, C., Bolotin, S. & Richardson, C. D. ( 2004; ). Mechanism of CD150 (SLAM) down regulation from the host cell surface by measles virus hemagglutinin protein. J Virol 78, 9666–9674.[CrossRef]
    [Google Scholar]
  58. Wild, T. F., Malvoisin, E. & Buckland, R. ( 1991; ). Measles virus: both the haemagglutinin and fusion glycoproteins are required for fusion. J Gen Virol 72, 439–442.[CrossRef]
    [Google Scholar]
  59. Williamson, M. M., Hooper, P. T., Selleck, P. W., Gleeson, L. J., Daniels, P. W., Westbury, H. A. & Murray, P. K. ( 1998; ). Transmission studies of Hendra virus (equine morbillivirus) in fruit bats, horses and cats. Aust Vet J 76, 813–818.[CrossRef]
    [Google Scholar]
  60. Williamson, M. M., Hooper, P. T., Selleck, P. W., Westbury, H. A. & Slocombe, R. F. ( 2000; ). Experimental hendra virus infection in pregnant guinea-pigs and fruit bats (Pteropus poliocephalus). J Comp Pathol 122, 201–207.[CrossRef]
    [Google Scholar]
  61. Williamson, M. M., Hooper, P. T., Selleck, P. W., Westbury, H. A. & Slocombe, R. F. S. ( 2001; ). A guinea-pig model of Hendra virus encephalitis. J Comp Pathol 124, 273–279.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82427-0
Loading
/content/journal/jgv/10.1099/vir.0.82427-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error