1887

Abstract

Fusion of the viral and cellular membranes is a critical step in the infection of cells by the human T-cell leukemia virus type 1 (HTLV-1) and this process is catalysed by the viral envelope glycoproteins. During fusion, the transmembrane glycoprotein (TM) is thought to undergo a transition from a rod-like pre-hairpin conformation that is stabilized by a trimeric coiled coil to a more compact six-helix-bundle or trimer-of-hairpins structure. Importantly, synthetic peptides that interfere with the conformational changes of TM are potent inhibitors of membrane fusion and HTLV-1 entry, suggesting that the pre-hairpin motif is a valid target for antiviral therapy. Here, a stable, trimeric TM derivative that mimics the coiled-coil structure of fusion-active TM has been used to develop a plate-based assay to identify reagents that interfere with the formation of the six-helix bundle. The assay discriminates effectively between strong, weak and inactive peptide inhibitors of membrane fusion and has been used to identify a monoclonal antibody (mAb) that disrupts six-helix-bundle formation efficiently . The mAb is reactive with the C-helical region of TM, indicating that this region of TM is immunogenic. However, the mAb failed to neutralize HTLV-1 envelope-mediated membrane fusion, suggesting that, on native viral envelope, the epitope recognized by the mAb is obscured during fusion. This novel mAb will be of value in the immunological characterization of fusion-active structures of HTLV-1 TM. Moreover, the assay developed here will aid the search for therapeutic antibodies, peptides and small-molecule inhibitors targeting envelope and the HTLV-1 entry process.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82390-0
2007-02-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/2/660.html?itemId=/content/journal/jgv/10.1099/vir.0.82390-0&mimeType=html&fmt=ahah

References

  1. Baba, M., Yuasa, S., Niwa, T., Yamamoto, M., Yabuuchi, S., Takashima, H., Ubasawa, M., Tanaka, H., Miyasaka, T. & other authors ( 1993; ). Effect of human serum on the in vitro anti-HIV-1 activity of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) derivatives as related to their lipophilicity and serum protein binding. Biochem Pharmacol 45, 2507–2512.[CrossRef]
    [Google Scholar]
  2. Baker, K. A., Dutch, R. E., Lamb, R. A. & Jardetzky, T. S. ( 1999; ). Structural basis for paramyxovirus-mediated membrane fusion. Mol Cell 3, 309–319.[CrossRef]
    [Google Scholar]
  3. Blanchard, S., Astier-Gin, T., Tallet, B., Moynet, D., Londos-Gagliardi, D. & Guillemain, B. ( 1999; ). Amino acid changes at positions 173 and 187 in the human T-cell leukemia virus type 1 surface glycoprotein induce specific neutralizing antibodies. J Virol 73, 9369–9376.
    [Google Scholar]
  4. Brighty, D. W. & Jassal, S. R. ( 2001; ). The synthetic peptide P-197 inhibits human T-cell leukemia virus type 1 envelope-mediated syncytium formation by a mechanism that is independent of Hsc70. J Virol 75, 10472–10478.[CrossRef]
    [Google Scholar]
  5. Bullough, P. A., Hughson, F. M., Skehel, J. J. & Wiley, D. C. ( 1994; ). Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371, 37–43.[CrossRef]
    [Google Scholar]
  6. Burton, D. R., Desrosiers, R. C., Doms, R. W., Koff, W. C., Kwong, P. D., Moore, J. P., Nabel, G. J., Sodroski, J., Wilson, I. A. & Wyatt, R. T. ( 2004; ). HIV vaccine design and the neutralizing antibody problem. Nat Immunol 5, 233–236.[CrossRef]
    [Google Scholar]
  7. Burton, D. R., Stanfield, R. L. & Wilson, I. A. ( 2005; ). Antibody vs. HIV in a clash of evolutionary titans. Proc Natl Acad Sci U S A 102, 14943–14948.[CrossRef]
    [Google Scholar]
  8. Chan, D. C., Fass, D., Berger, J. M. & Kim, P. S. ( 1997; ). Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263–273.[CrossRef]
    [Google Scholar]
  9. Deen, K. C., McDougal, J. S., Inacker, R., Folena-Wasserman, G., Arthos, J., Rosenberg, J., Maddon, P. J., Axel, R. & Sweet, R. W. ( 1988; ). A soluble form of CD4 (T4) protein inhibits AIDS virus infection. Nature 331, 82–84.[CrossRef]
    [Google Scholar]
  10. Delamarre, L., Pique, C., Pham, D., Tursz, T. & Dokhelar, M. C. ( 1994; ). Identification of functional regions in the human T-cell leukemia virus type I SU glycoprotein. J Virol 68, 3544–3549.
    [Google Scholar]
  11. Delamarre, L., Rosenberg, A. R., Pique, C., Pham, D. & Dokhelar, M. C. ( 1997; ). A novel human T-leukemia virus type 1 cell-to-cell transmission assay permits definition of SU glycoprotein amino acids important for infectivity. J Virol 71, 259–266.
    [Google Scholar]
  12. Delamarre, L., Pique, C., Rosenberg, A. R., Blot, V., Grange, M. P., Le Blanc, I. & Dokhelar, M. C. ( 1999; ). The Y-S-L-I tyrosine-based motif in the cytoplasmic domain of the human T-cell leukemia virus type 1 envelope is essential for cell-to-cell transmission. J Virol 73, 9659–9663.
    [Google Scholar]
  13. de Rosny, E., Vassell, R., Jiang, S., Kunert, K. & Weiss, C. D. ( 2004; ). Binding of the 2F5 monoclonal antibody to native and fusion-intermediate forms of human immunodeficiency virus type 1 gp41: implications for fusion-inducing conformational changes. J Virol 78, 2627–2631.[CrossRef]
    [Google Scholar]
  14. Desgranges, C., Souche, S., Vernant, J. C., Smadja, D., Vahlne, A. & Horal, P. ( 1994; ). Identification of novel neutralization-inducing regions of the human T cell lymphotropic virus type I envelope glycoproteins with human HTLV-I-seropositive sera. AIDS Res Hum Retroviruses 10, 163–173.[CrossRef]
    [Google Scholar]
  15. Dokhelar, M. C., Pickford, H., Sodroski, J. & Haseltine, W. A. ( 1989; ). HTLV-1 p27rex regulates gag and env protein expression. J Acquir Immune Defic Syndr 2, 431–440.
    [Google Scholar]
  16. Eckert, D. M. & Kim, P. S. ( 2001; ). Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem 70, 777–810.[CrossRef]
    [Google Scholar]
  17. Fass, D., Harrison, S. C. & Kim, P. S. ( 1996; ). Retrovirus envelope domain at 1.7 Å resolution. Nat Struct Biol 3, 465–469.[CrossRef]
    [Google Scholar]
  18. Fisher, R. A., Bertonis, J. M., Meier, W., Johnson, V. A., Costopoulos, D. S., Liu, T., Tizard, R., Walker, B. D., Hirsch, M. S. & other authors ( 1988; ). HIV infection is blocked in vitro by recombinant soluble CD4. Nature 331, 76–78.[CrossRef]
    [Google Scholar]
  19. Golding, H., Zaitseva, M., de Rosny, E., King, L. R., Manischewitz, J., Sidorov, I., Gorny, M. K., Zolla-Pazner, S., Dimitrov, D. S. & Weiss, C. D. ( 2002; ). Dissection of human immunodeficiency virus type 1 entry with neutralizing antibodies to gp41 fusion intermediates. J Virol 76, 6780–6790.[CrossRef]
    [Google Scholar]
  20. Jassal, S. R., Lairmore, M. D., Leigh-Brown, A. J. & Brighty, D. W. ( 2001; ). Soluble recombinant HTLV-1 surface glycoprotein competitively inhibits syncytia formation and viral infection of cells. Virus Res 78, 17–34.[CrossRef]
    [Google Scholar]
  21. Jiang, S., Lin, K., Strick, N. & Neurath, A. R. ( 1993; ). HIV-1 inhibition by a peptide. Nature 365, 113.
    [Google Scholar]
  22. Jinno, A., Haraguchi, Y., Shiraki, H. & Hoshino, H. ( 1999; ). Inhibition of cell-free human T-cell leukaemia virus type 1 infection at a postbinding step by the synthetic peptide derived from an ectodomain of the gp21 transmembrane glycoprotein. J Virol 73, 9683–9689.
    [Google Scholar]
  23. Johnston, E. R. & Radke, K. ( 2000; ). The SU and TM envelope protein subunits of bovine leukemia virus are linked by disulfide bonds, both in cells and in virions. J Virol 74, 2930–2935.[CrossRef]
    [Google Scholar]
  24. Kilby, J. M. & Eron, J. J. ( 2003; ). Novel therapies based on mechanisms of HIV-1 cell entry. N Engl J Med 348, 2228–2238.[CrossRef]
    [Google Scholar]
  25. Kilby, J. M., Hopkins, S., Venetta, T. M., DiMassimo, B., Cloud, G. A., Lee, J. Y., Alldredge, L., Hunter, E., Lambert, D. & other authors ( 1998; ). Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med 4, 1302–1307.[CrossRef]
    [Google Scholar]
  26. Kobe, B., Center, R. J., Kemp, B. E. & Poumbourios, P. ( 1999; ). Crystal structure of human T cell leukemia virus type 1 gp21 ectodomain crystallized as a maltose-binding protein chimera reveals structural evolution of retroviral transmembrane proteins. Proc Natl Acad Sci U S A 96, 4319–4324.[CrossRef]
    [Google Scholar]
  27. Kuroki, M., Nakamura, M., Itoyama, Y., Tanaka, Y., Shiraki, H., Baba, E., Esaki, T., Tatsumoto, T., Nagafuchi, S. & Nakano, S. ( 1992; ). Identification of new epitopes recognized by human monoclonal antibodies with neutralizing and antibody-dependent cellular cytotoxicity activities specific for human T cell leukemia virus type 1. J Immunol 149, 940–948.
    [Google Scholar]
  28. Lalezari, J. P., Henry, K., O'Hearn, M., Montaner, J. S., Piliero, P. J., Trottier, B., Walmsley, S., Cohen, C., Kuritzkes, D. R. & other authors ( 2003; ). Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. N Engl J Med 348, 2175–2185.[CrossRef]
    [Google Scholar]
  29. Liu, S., Lu, H., Niu, J., Xu, Y., Wu, S. & Jiang, S. ( 2005; ). Different from the HIV fusion inhibitor C34, the anti-HIV drug Fuzeon (T-20) inhibits HIV-1 entry by targeting multiple sites in gp41 and gp120. J Biol Chem 280, 11259–11273.[CrossRef]
    [Google Scholar]
  30. Louis, J. M., Nesheiwat, I., Chang, L., Clore, G. M. & Bewley, C. A. ( 2003; ). Covalent trimers of the internal N-terminal trimeric coiled-coil of gp41 and antibodies directed against them are potent inhibitors of HIV envelope-mediated cell fusion. J Biol Chem 278, 20278–20285.[CrossRef]
    [Google Scholar]
  31. Lu, M. & Kim, P. S. ( 1997; ). A trimeric structural subdomain of the HIV-1 transmembrane glycoprotein. J Biomol Struct Dyn 15, 465–471.[CrossRef]
    [Google Scholar]
  32. Lu, M., Blacklow, S. C. & Kim, P. S. ( 1995; ). A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol 2, 1075–1082.[CrossRef]
    [Google Scholar]
  33. Malashkevich, V. N., Chan, D. C., Chutkowski, C. T. & Kim, P. S. ( 1998; ). Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: conserved helical interactions underlie the broad activity of gp41 peptides. Proc Natl Acad Sci U S A 95, 9134–9139.[CrossRef]
    [Google Scholar]
  34. Malashkevich, V. N., Scheider, B. J., McNally, M. L., Milhollen, M. A., Pang, J. X. & Kim, P. S. ( 1999; ). Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-Å resolution. Proc Natl Acad Sci U S A 96, 2662–2667.[CrossRef]
    [Google Scholar]
  35. Miller, M. D., Geleziunas, R., Bianchi, E., Lennard, S., Hrin, R., Zhang, H., Lu, M., An, Z., Ingallinella, P. & other authors ( 2005; ). A human monoclonal antibody neutralizes diverse HIV-1 isolates by binding a critical gp41 epitope. Proc Natl Acad Sci U S A 102, 14759–14764.[CrossRef]
    [Google Scholar]
  36. Moulard, M., Lortat-Jacob, H., Mondor, I., Roca, G., Wyatt, R., Sodroski, J., Zhao, L., Olson, W., Kwong, P. D. & Sattentau, Q. J. ( 2000; ). Selective interactions of polyanions with basic surfaces on human immunodeficiency virus type 1 gp120. J Virol 74, 1948–1960.[CrossRef]
    [Google Scholar]
  37. Palker, T. J., Riggs, E. R., Spragion, D. E., Muir, A. J., Scearce, R. M., Randall, R. R., McAdams, M. W., McKnight, A., Clapham, P. R. & other authors ( 1992; ). Mapping of homologous, amino-terminal neutralizing regions of human T-cell lymphotropic virus type I and II gp46 envelope glycoproteins. J Virol 66, 5879–5889.
    [Google Scholar]
  38. Piñón, J. D., Klasse, P. J., Jassal, S. R., Welson, S., Weber, J., Brighty, D. W. & Sattentau, Q. J. ( 2003a; ). Human T-cell leukemia virus type 1 envelope glycoprotein gp46 interacts with cell surface heparan sulfate proteoglycans. J Virol 77, 9922–9930.[CrossRef]
    [Google Scholar]
  39. Piñón, J. D., Kelly, S. M., Price, N. C., Flanagan, J. U. & Brighty, D. W. ( 2003b; ). An antiviral peptide targets a coiled-coil domain of the human T-cell leukemia virus envelope glycoprotein. J Virol 77, 3281–3290.[CrossRef]
    [Google Scholar]
  40. Pique, C., Tursz, T. & Dokhelar, M. C. ( 1990; ). Mutations introduced along the HTLV-I envelope gene result in a non-functional protein: a basis for envelope conservation? EMBO J 9, 4243–4248.
    [Google Scholar]
  41. Pique, C., Pham, D., Tursz, T. & Dokhelar, M. C. ( 1992; ). Human T-cell leukemia virus type I envelope protein maturation process: requirements for syncytium formation. J Virol 66, 906–913.
    [Google Scholar]
  42. Pique, C., Pham, D., Tursz, T. & Dokhelar, M. C. ( 1993; ). The cytoplasmic domain of the human T-cell leukemia virus type I envelope can modulate envelope functions in a cell type-dependent manner. J Virol 67, 557–561.
    [Google Scholar]
  43. Poon, B. & Chen, I. S. ( 1998; ). Identification of a domain within the human T-cell leukemia virus type 2 envelope required for syncytium induction and replication. J Virol 72, 1959–1966.
    [Google Scholar]
  44. Rosenberg, A. R., Delamarre, L., Pique, C., Pham, D. & Dokhelar, M.-C. ( 1997; ). The ectodomain of the human T-cell leukemia virus type 1 TM glycoprotein is involved in postfusion events. J Virol 71, 7180–7186.
    [Google Scholar]
  45. Rosenthal, P. B., Zhang, X., Formanowski, F., Fitz, W., Wong, C. H., Meier-Ewert, H., Skehel, J. J. & Wiley, D. C. ( 1998; ). Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus. Nature 396, 92–96.[CrossRef]
    [Google Scholar]
  46. Sagara, Y., Inoue, Y., Shiraki, H., Jinno, A., Hoshino, H. & Maeda, Y. ( 1996; ). Identification and mapping of functional domains on human T-cell lymphotropic virus type 1 envelope proteins by using synthetic peptides. J Virol 70, 1564–1569.
    [Google Scholar]
  47. Shida, H., Tochikura, T., Sato, T., Konno, T., Hirayoshi, K., Seki, M., Ito, Y., Hatanaka, M., Hinuma, Y. & other authors ( 1987; ). Effect of the recombinant vaccinia viruses that express HTLV-I envelope gene on HTLV-I infection. EMBO J 6, 3379–3384.
    [Google Scholar]
  48. Sodroski, J. G. ( 1999; ). HIV-1 entry inhibitors in the side pocket. Cell 99, 243–246.[CrossRef]
    [Google Scholar]
  49. Tanaka, Y., Zeng, L., Shiraki, H., Shida, H. & Tozawa, H. ( 1991; ). Identification of a neutralization epitope on the envelope gp46 antigen of human T cell leukemia virus type I and induction of neutralizing antibody by peptide immunization. J Immunol 147, 354–360.
    [Google Scholar]
  50. Wallin, M., Ekstrom, M. & Garoff, H. ( 2004; ). Isomerization of the intersubunit disulphide-bond in Env controls retrovirus fusion. EMBO J 23, 54–65.[CrossRef]
    [Google Scholar]
  51. Weissenhorn, W., Carfi, A., Lee, K. H., Skehel, J. J. & Wiley, D. C. ( 1998; ). Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Mol Cell 2, 605–616.[CrossRef]
    [Google Scholar]
  52. Wild, C., Oas, T., McDanal, C., Bolognesi, D. & Matthews, T. ( 1992; ). A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc Natl Acad Sci U S A 89, 10537–10541.[CrossRef]
    [Google Scholar]
  53. Wilson, I. A., Skehel, J. J. & Wiley, D. C. ( 1981; ). Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289, 366–373.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82390-0
Loading
/content/journal/jgv/10.1099/vir.0.82390-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error