1887

Abstract

This study examined nuclear and cytoplasmic shuttling of the African swine fever virus (ASFV) A238L protein, which is an inhibitor of NF-B and of calcineurin phosphatase. The results showed that the protein was present in both the nucleus and the cytoplasm in ASFV-infected cells and that the higher molecular mass 32 kDa form of the A238L protein was the predominant nuclear form, which accumulated later in infection. In contrast, both the 28 and 32 kDa forms of the A238L protein were present in the cytoplasm. The A238L protein was actively imported into the nucleus and exported by a CRM1-mediated pathway, although a pool of the protein remained in the cytoplasm and did not enter the nucleus. By using a recombinant ASFV from which the A238L gene had been deleted, it was shown that expression of A238L did not inhibit nuclear import of the NF-B p50 or p65 subunit and did not inhibit nuclear export of p65 by a CRM1-mediated pathway. The results were consistent with a model in which A238L functions within both the nucleus and the cytoplasm.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82358-0
2007-02-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/2/411.html?itemId=/content/journal/jgv/10.1099/vir.0.82358-0&mimeType=html&fmt=ahah

References

  1. Aubareda, A., Mulero, M. C. & Pérez-Riba, M. ( 2006; ). Functional characterization of the calcipressin motif that suppresses calcineurin-mediated NFAT-dependent cytokine gene expression in human T cells. Cell Signal 18, 1430–1438.[CrossRef]
    [Google Scholar]
  2. Bowie, A. G., Zhan, J. & Marshal, W. L. ( 2004; ). Viral appropriation of apoptotic and NF-κB signaling pathways. J Cell Biochem 91, 1099–1108.[CrossRef]
    [Google Scholar]
  3. Camus-Bouclainville, C., Fiette, L., Bouchiha, S., Pignolet, A., Counor, D., Filipe, U., Gelfi, J. & Messud-Petit, F. ( 2004; ). A virulence factor of myxoma virus colocalizes with NF-κB in the nucleus and interferes with inflammation. J Virol 78, 2510–2516.[CrossRef]
    [Google Scholar]
  4. Crabtree, G. R. & Olson, E. N. ( 2002; ). NFAT signaling: choreographing the social lives of cells. Cell 109, S67–S79.[CrossRef]
    [Google Scholar]
  5. Dixon, L. K., Abrams, C. C., Bowick, G., Goatley, L. C., Kay-Jackson, P. C., Chapman, D., Liverani, E., Nix, R., Silk, R. & Zhang, F. ( 2004; ). African swine fever virus proteins involved in evading host defence systems. Vet Immunol Immunopathol 100, 117–134.[CrossRef]
    [Google Scholar]
  6. Dixon, L. K., Escribano, J. M., Martins, C., Rock, D. L., Salas, M. L. & Wilkinson, P. J. ( 2005; ). Asfarviridae. In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses, pp. 135–143. Edited by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger & L. A. Ball. London: Elsevier/Academic Press.
  7. Granja, A. G., Nogal, M. L., Hurtado, C., Salas, J., Salas, M. L., Carrascosa, A. L. & Revilla, Y. ( 2004a; ). Modulation of p53 cellular function and cell death by African swine fever virus. J Virol 78, 7165–7174.[CrossRef]
    [Google Scholar]
  8. Granja, A. G., Nogal, M. L., Hurtado, C., Vila, V., Carrascosa, A. L., Salas, M. L., Fresno, M. & Revilla, Y. ( 2004b; ). The viral protein A238L inhibits cyclooxygenase-2 expression through a nuclear factor of activated T cell-dependent transactivation pathway. J Biol Chem 279, 53736–53746.[CrossRef]
    [Google Scholar]
  9. Granja, A. G., Nogal, M. L., Hurtado, C., del Aguila, C., Carrascosa, A. L., Salas, M. L., Fresno, M. & Revilla, Y. ( 2006; ). The viral protein A238L inhibits TNF-α expression through a CBP/p300 transcriptional coactivators pathway. J Immunol 176, 451–462.[CrossRef]
    [Google Scholar]
  10. Hayden, M. S. & Ghosh, S. ( 2004; ). Signaling to NF-κB. Genes Dev 18, 2195–2224.[CrossRef]
    [Google Scholar]
  11. Horton, P., Park, K.-J., Obayashi, T. & Nakai, K. ( 2006; ). Protein Subcellular Localization Prediction with WoLF PSORT. Proceedings of the 4th Annual Asia Pacific Bioinformatics Conference APBC06, Taipei, Taiwan, pp. 39–48.
  12. Huang, T. T. & Miyamoto, S. ( 2001; ). Postrepression activation of NF-κB requires the amino-terminal nuclear export signal specific to IκBα. Mol Cell Biol 21, 4737–4747.[CrossRef]
    [Google Scholar]
  13. Huang, T. T., Kudo, N., Yoshida, M. & Miyamoto, S. ( 2000; ). A nuclear export signal in the N-terminal regulatory domain of IκBα controls cytoplasmic localization of inactive NF-κB/IκBα complexes. Proc Natl Acad Sci U S A 97, 1014–1019.[CrossRef]
    [Google Scholar]
  14. Huxford, T., Huang, D.-B., Malek, S. & Ghosh, G. ( 1998; ). The crystal structure of the IκBα/NF-κB complex reveals mechanisms of NF-κB inactivation. Cell 95, 759–770.[CrossRef]
    [Google Scholar]
  15. Israel, A. ( 2000; ). The IKK complex: an integrator of all signals that activate NF-κB? Trends Cell Biol 10, 129–133.[CrossRef]
    [Google Scholar]
  16. Jacobs, M. D. & Harrison, S. C. ( 1998; ). Structure of an IκBα/NF-κB complex. Cell 95, 749–758.[CrossRef]
    [Google Scholar]
  17. Johnson, C., Van Antwerp, D. & Hope, T. J. ( 1999; ). An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IκBα. EMBO J 18, 6682–6693.[CrossRef]
    [Google Scholar]
  18. Kang, K.-H., Lee, K.-H., Kim, M.-Y. & Choi, K.-H. ( 2001; ). Caspase-3-mediated cleavage of the NF-κB subunit p65 at the NH2 terminus potentiates naphthoquinone analog-induced apoptosis. J Biol Chem 276, 24638–24644.[CrossRef]
    [Google Scholar]
  19. Li, H., Rao, A. J. & Hogan, P. G. ( 2004; ). Structural delineation of the calcineurin–NFAT interaction and its parallels to PP1 targeting interactions. J Mol Biol 342, 1659–1674.[CrossRef]
    [Google Scholar]
  20. Malek, S., Huxford, T. & Ghosh, G. ( 1998; ). IκBα functions through direct contacts with the nuclear localization signals and the DNA binding sequences of NF-κB. J Biol Chem 273, 25427–25435.[CrossRef]
    [Google Scholar]
  21. Malek, S., Chen, Y., Huxford, T. & Ghosh, G. ( 2001; ). IκBβ, but not IκBα, functions as a classical cytoplasmic inhibitor of NF-κB dimers by masking both NF-κB nuclear localization sequences in resting cells. J Biol Chem 276, 45225–45235.[CrossRef]
    [Google Scholar]
  22. Malek, S., Huang, D.-B., Huxford, T., Ghosh, S. & Ghosh, G. ( 2003; ). X-ray crystal structure of an IκBβ center dot NF-κB p65 homodimer complex. J Biol Chem 278, 23094–23100.[CrossRef]
    [Google Scholar]
  23. Martinez-Martinez, S. & Redondo, J. M. ( 2004; ). Inhibitors of the calcineurin/NFAT pathway. Curr Med Chem 11, 997–1007.[CrossRef]
    [Google Scholar]
  24. Miskin, J. E., Abrams, C. C., Goatley, L. C. & Dixon, L. K. ( 1998; ). A viral mechanism for inhibition of the cellular phosphatase calcineurin. Science 281, 562–565.[CrossRef]
    [Google Scholar]
  25. Miskin, J. E., Abrams, C. C. & Dixon, L. K. ( 2000; ). African swine fever virus protein A238L interacts with the cellular phosphatase calcineurin via a binding domain similar to that of NFAT. J Virol 74, 9412–9420.[CrossRef]
    [Google Scholar]
  26. Neilan, J. G., Lu, Z., Kutish, G. F., Zsak, L., Lewis, T. L. & Rock, D. L. ( 1997; ). A conserved African swine fever virus I kappa B homolog, 5EL, is nonessential for growth in vitro and virulence in domestic swine. Virology 235, 377–385.[CrossRef]
    [Google Scholar]
  27. Nogal, M. L., de Buitrago, G. G., Rodriguez, C., Cubelos, B., Carrascosa, A. L., Salas, M. L. & Revilla, Y. ( 2001; ). African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells. J Virol 75, 2535–2543.[CrossRef]
    [Google Scholar]
  28. Powell, P. P., Dixon, L. K. & Parkhouse, R. M. E. ( 1996; ). An IκB homolog encoded by African swine fever virus provides a novel mechanism for downregulation of proinflammatory cytokine responses in host macrophages. J Virol 70, 8527–8533.
    [Google Scholar]
  29. Revilla, Y., Callejo, M., Rodríguez, J. M., Culebras, E., Nogal, M. L., Salas, M. L., Viñuela, E. & Fresno, M. ( 1998; ). Inhibition of nuclear factor κB activation by a virus-encoded IκB-like protein. J Biol Chem 273, 5405–5411.[CrossRef]
    [Google Scholar]
  30. Scott, E. S., Malcomber, S. & O'Hare, P. ( 2001; ). Nuclear translocation and activation of the transcription factor NFAT is blocked by herpes simplex virus infection. J Virol 75, 9955–9965.[CrossRef]
    [Google Scholar]
  31. Tait, S. W. G., Reid, E. B., Greaves, D. R., Wileman, T. E. & Powell, P. P. ( 2000; ). Mechanism of inactivation of NF-κB by a viral homologue of IκBα: signal-induced release of IκBα results in binding of the viral homologue to NF-κB. J Biol Chem 275, 34656–34664.[CrossRef]
    [Google Scholar]
  32. Upton, C., Slack, S., Hunter, A. L., Ehlers, A. & Roper, R. L. ( 2003; ). Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome. J Virol 77, 7590–7600.[CrossRef]
    [Google Scholar]
  33. Yamamoto, M., Yamazaki, S., Uematsu, S., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Kuwata, H., Takeuchi, O. & other authors ( 2004; ). Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IκBζ. Nature 430, 218–222.[CrossRef]
    [Google Scholar]
  34. Yamazaki, S., Muta, T. & Takeshige, K. ( 2001; ). A novel IκB protein, IκBζ, induced by proinflammatory stimuli, negatively regulates nuclear factor-κB in the nuclei. J Biol Chem 276, 27657–27662.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82358-0
Loading
/content/journal/jgv/10.1099/vir.0.82358-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error