1887

Abstract

Assembly of (ASFV) involves the transfer of the major capsid protein, p73, from the cytosol onto the cytoplasmic face of endoplasmic reticulum-derived membranes. During this process, the folding of p73 is dependent upon transient association with a specific viral chaperone, CAP80. The cell cytoplasm maintains high concentrations of reduced glutathione, leading to a reducing environment. Here, the effects of redox environment on the assembly of ASFV have been studied. Diamide, which oxidizes the cell cytosol, slowed the folding of p73 and prevented release from CAP80 and subsequent binding of p73 to membranes. Similarly, cell oxidation slowed the assembly of p73 molecules already bound to membranes into virus capsid precursors. Interestingly, addition of oxidized glutathione to newly assembled virus capsid precursors led to disassembly; however, virus particles released from cells were resistant to oxidized glutathione. These data show that assembly of ASFV requires the reducing environment that prevails in the cytosol, but as the virus matures, it becomes resistant to oxidation, possibly indicating preparation for release from the cell.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82257-0
2007-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/1/77.html?itemId=/content/journal/jgv/10.1099/vir.0.82257-0&mimeType=html&fmt=ahah

References

  1. Almeida J. D., Waterson A. P., Plowright W. 1967; The morphological characteristics of African swine fever virus and its resemblance to tipula iridescent virus. Arch Gesamte Virusforsch 20:392–396 [CrossRef]
    [Google Scholar]
  2. Andres G., Simon-Mateo C., Vinuela E. 1997; Assembly of African swine fever virus: role of polyprotein pp220. J Virol 71:2331–2341
    [Google Scholar]
  3. Andres G., Garcia-Escudero R., Simon-Mateo C., Vinuela E. 1998; African swine fever virus is enveloped by a two-membraned collapsed cisterna derived from the endoplasmic reticulum. J Virol 72:8988–9001
    [Google Scholar]
  4. Andres G., Alejo A., Salas J., Salas M. L. 2002a; African swine fever virus polyproteins pp220 and pp62 assemble into the core shell. J Virol 76:12473–12482 [CrossRef]
    [Google Scholar]
  5. Andres G., Garcia-Escudero R., Salas M. L., Rodriguez J. M. 2002b; Repression of African swine fever virus polyprotein pp220-encoding gene leads to the assembly of icosahedral core-less particles. J Virol 76:2654–2666 [CrossRef]
    [Google Scholar]
  6. Arzuza O., Urzainqui A., Diaz-Ruiz J. R., Tabares E. 1992; Morphogenesis of African swine fever virus in monkey kidney cells after reversible inhibition of replication by cycloheximide. Arch Virol 124:343–354 [CrossRef]
    [Google Scholar]
  7. Black D. N., Brown F. 1976; Purification and physicochemical characteristics of African swine fever virus. J Gen Virol 32:509–518 [CrossRef]
    [Google Scholar]
  8. Breese S. S. Jr, Hess W. R. 1966; Electron microscopy of African swine fever virus hemadsorption. J Bacteriol 92:272–274
    [Google Scholar]
  9. Carrascosa J. L., Carazo J. M., Carrascosa A. L., Garcia N., Santisteban A., Vinuela E. 1984; General morphology and capsid fine structure of African swine fever virus particles. Virology 132:160–172 [CrossRef]
    [Google Scholar]
  10. Carrascosa J. L., Gonzalez P., Carrascosa A. L., Garcia-Barreno B., Enjuanes L., Vinuela E. 1986; Localization of structural proteins in African swine fever virus particles by immunoelectron microscopy. J Virol 58:377–384
    [Google Scholar]
  11. Carvalho Z. G., De Matos A. P., Rodrigues-Pousada C. 1988; Association of African swine fever virus with the cytoskeleton. Virus Res 11:175–192 [CrossRef]
    [Google Scholar]
  12. Cobbold C., Wileman T. 1998; The major structural protein of African swine fever virus, p73, is packaged into large structures, indicative of viral capsid or matrix precursors, on the endoplasmic reticulum. J Virol 72:5215–5223
    [Google Scholar]
  13. Cobbold C., Whittle J. T., Wileman T. 1996; Involvement of the endoplasmic reticulum in the assembly and envelopment of African swine fever virus. J Virol 70:8382–8390
    [Google Scholar]
  14. Cobbold C., Brookes S. M., Wileman T. 2000; Biochemical requirements of virus wrapping by the endoplasmic reticulum: involvement of ATP and endoplasmic reticulum calcium store during envelopment of African swine fever virus. J Virol 74:2151–2160 [CrossRef]
    [Google Scholar]
  15. Cobbold C., Windsor M., Wileman T. 2001; A virally encoded chaperone specialized for folding of the major capsid protein of African swine fever virus. J Virol 75:7221–7229 [CrossRef]
    [Google Scholar]
  16. Enjuanes L., Carrascosa A. L., Moreno M. A., Vinuela E. 1976; Titration of African swine fever (ASF) virus. J Gen Virol 32:471–477 [CrossRef]
    [Google Scholar]
  17. Heath C. M., Windsor M., Wileman T. 2001; Aggresomes resemble sites specialized for virus assembly. J Cell Biol 153:449–455 [CrossRef]
    [Google Scholar]
  18. Heath C. M., Windsor M., Wileman T. 2003; Membrane association facilitates the correct processing of pp220 during production of the major matrix proteins of African swine fever virus. J Virol 77:1682–1690 [CrossRef]
    [Google Scholar]
  19. Jouvenet N., Monaghan P., Way M., Wileman T. 2004; Transport of African swine fever virus from assembly sites to the plasma membrane is dependent on microtubules and conventional kinesin. J Virol 78:7990–8001 [CrossRef]
    [Google Scholar]
  20. Jouvenet N., Windsor M., Rietdorf J., Hawes P., Monagahan P., Way M., Wileman T. 2006; African swine fever virus induces filopodia-like projections at the plasma membrane. Cell Microbiol 8:1803–1811 [CrossRef]
    [Google Scholar]
  21. Kelly D. C., Robertson J. S. 1973; Icosahedral cytoplasmic deoxyriboviruses. J Gen Virol 20:Suppl.17–41
    [Google Scholar]
  22. Lewis T., Zsak L., Burrage T. G., Lu Z., Kutish G. F., Neilan J. G., Rock D. L. 2000; An African swine fever virus ERV1-ALR homologue, 9GL, affects virion maturation and viral growth in macrophages and viral virulence in swine. J Virol 74:1275–1285 [CrossRef]
    [Google Scholar]
  23. Locker J. K., Griffiths G. 1999; An unconventional role for cytoplasmic disulfide bonds in vaccinia virus proteins. J Cell Biol 144:267–279 [CrossRef]
    [Google Scholar]
  24. Maggioni C., Braakman I. 2005; Synthesis and quality control of viral membrane proteins. Curr Top Microbiol Immunol 285:175–198
    [Google Scholar]
  25. Nunes J. F., Vigario J. D., Terrinha A. M. 1975; Ultrastructural study of African swine fever virus replication in cultures of swine bone marrow cells. Arch Virol 49:59–66 [CrossRef]
    [Google Scholar]
  26. O'Brien R. W., Weitzman P. D., Morris J. G. 1970; Oxidation of a variety of natural electron donors by the thiol-oxidising agent, diamide. FEBS Lett 10:343–345 [CrossRef]
    [Google Scholar]
  27. Raoult D., Audic S., Robert C., Abergel C., Renesto P., Ogata H., La Scola B., Suzan M., Claverie J. M. 2004; The 1.2-megabase genome sequence of Mimivirus. Science 306:1344–1350 [CrossRef]
    [Google Scholar]
  28. Rodriguez J. M., Garcia-Escudero R., Salas M. L., Andres G. 2004; African swine fever virus structural protein p54 is essential for the recruitment of envelope precursors to assembly sites. J Virol 78:4299–4313 [CrossRef]
    [Google Scholar]
  29. Rodriguez I., Redrejo-Rodriguez M., Rodriguez J. M., Alejo A., Salas J., Salas M. L. 2006; African swine fever virus pB119L protein is a flavin adenine dinucleotide-linked sulfhydryl oxidase. J Virol 80:3157–3166 [CrossRef]
    [Google Scholar]
  30. Rojo G., Chamorro M., Salas M. L., Vinuela E., Cuezva J. M., Salas J. 1998; Migration of mitochondria to viral assembly sites in African swine fever virus-infected cells. J Virol 72:7583–7588
    [Google Scholar]
  31. Rouiller I., Brookes S. M., Hyatt A. D., Windsor M., Wileman T. 1998; African swine fever virus is wrapped by the endoplasmic reticulum. J Virol 72:2373–2387
    [Google Scholar]
  32. Senkevich T. G., White C. L., Koonin E. V., Moss B. 2000; A viral member of the ERV1/ALR protein family participates in a cytoplasmic pathway of disulfide bond formation. Proc Natl Acad Sci U S A 97:12068–12073 [CrossRef]
    [Google Scholar]
  33. Senkevich T. G., White C. L., Koonin E. V., Moss B. 2002; Complete pathway for protein disulfide bond formation encoded by poxviruses. Proc Natl Acad Sci U S A 99:6667–6672 [CrossRef]
    [Google Scholar]
  34. Stefanovic S., Windsor M., Nagata K. I., Inagaki M., Wileman T. 2005; Vimentin rearrangement during African swine fever virus infection involves retrograde transport along microtubules and phosphorylation of vimentin by calcium calmodulin kinase II. J Virol 79:11766–11775 [CrossRef]
    [Google Scholar]
  35. Wileman T. 2006; Aggresomes and autophagy generate sites for virus replication. Science 312:875–878 [CrossRef]
    [Google Scholar]
  36. Wileman T., Kane L. P., Young J., Carson G. R., Terhorst C. 1993; Associations between subunit ectodomains promote T cell antigen receptor assembly and protect against degradation in the ER. J Cell Biol 122:67–78 [CrossRef]
    [Google Scholar]
  37. Yanez R. J., Rodriguez J. M., Nogal M. L., Yuste L., Enriquez C., Rodriguez J. F., Vinuela E. 1995; Analysis of the complete nucleotide sequence of African swine fever virus. Virology 208:249–278 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82257-0
Loading
/content/journal/jgv/10.1099/vir.0.82257-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error