1887

Abstract

It has previously been shown by our laboratory that OTK18, a human immunodeficiency virus (HIV)-inducible zinc-finger protein, reduces progeny-virion production in infected human macrophages. OTK18 antiviral activity is mediated through suppression of Tat-induced HIV-1 long terminal repeat (LTR) promoter activity. Through the use of LTR-scanning mutant vectors, the specific regions responsible for OTK18-mediated LTR suppression have been defined. Two different LTR regions were identified as potential OTK18-binding sites by an enhanced DNA–transcription factor ELISA system; the negative-regulatory element (NRE) at −255/−238 and the Ets-binding site (EBS) at −150/−139 in the LTR. In addition, deletion of the EBS in the LTR blocked OTK18-mediated LTR suppression. These data indicate that OTK18 suppresses LTR activity through two distinct regulatory elements. Spontaneous mutations in these regions might enable HIV-1 to escape from OTK18 antiretroviral activity in human macrophages.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82066-0
2007-01-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/1/236.html?itemId=/content/journal/jgv/10.1099/vir.0.82066-0&mimeType=html&fmt=ahah

References

  1. Carlson, K. A., Leisman, G., Limoges, J., Pohlman, G. D., Horiba, M., Buescher, J., Gendelman, H. E. & Ikezu, T. ( 2004a; ). Molecular characterization of a putative antiretroviral transcriptional factor, OTK18. J Immunol 172, 381–391.[CrossRef]
    [Google Scholar]
  2. Carlson, K. A., Limoges, J., Pohlman, G. D., Poluektova, L. Y., Langford, D., Masliah, E., Ikezu, T. & Gendelman, H. E. ( 2004b; ). OTK18 expression in brain mononuclear phagocytes parallels the severity of HIV-1 encephalitis. J Neuroimmunol 150, 186–198.[CrossRef]
    [Google Scholar]
  3. Cicala, C., Arthos, J., Selig, S. M., Dennis, G., Jr, Hosack, D. A., Van Ryk, D., Spangler, M. L., Steenbeke, T. D., Khazanie, P. & other authors ( 2002; ). HIV envelope induces a cascade of cell signals in non-proliferating target cells that favor virus replication. Proc Natl Acad Sci U S A 99, 9380–9385.[CrossRef]
    [Google Scholar]
  4. De Arellano, E. R., Soriano, V. & Holguin, A. ( 2005; ). Genetic analysis of regulatory, promoter, and TAR regions of LTR sequences belonging to HIV type 1 non-B subtypes. AIDS Res Hum Retroviruses 21, 949–954.[CrossRef]
    [Google Scholar]
  5. Estable, M. C., Bell, B., Merzouki, A., Montaner, J. S., O'Shaughnessy, M. V. & Sadowski, I. J. ( 1996; ). Human immunodeficiency virus type 1 long terminal repeat variants from 42 patients representing all stages of infection display a wide range of sequence polymorphism and transcription activity. J Virol 70, 4053–4062.
    [Google Scholar]
  6. Galio, L., Briquet, S. & Vaquero, C. ( 1999; ). Real-time study of interactions between a composite DNA regulatory region (HIV-1 LTR NRE) and several transcription factors of nuclear extracts. Biochem Biophys Res Commun 264, 6–13.[CrossRef]
    [Google Scholar]
  7. Garcia, J. A., Wu, F. K., Mitsuyasu, R. & Gaynor, R. B. ( 1987; ). Interactions of cellular proteins involved in the transcriptional regulation of the human immunodeficiency virus. EMBO J 6, 3761–3770.
    [Google Scholar]
  8. Griffin, G. E., Leung, K., Folks, T. M., Kunkel, S. & Nabel, G. J. ( 1989; ). Activation of HIV gene expression during monocyte differentiation by induction of NF-κB. Nature 339, 70–73.[CrossRef]
    [Google Scholar]
  9. Hayes, M. M., Lane, B. R., King, S. R., Markovitz, D. M. & Coffey, M. J. ( 2002; ). Peroxisome proliferator-activated receptor γ agonists inhibit HIV-1 replication in macrophages by transcriptional and post-transcriptional effects. J Biol Chem 277, 16913–16919.[CrossRef]
    [Google Scholar]
  10. Henderson, A. J., Connor, R. I. & Calame, K. L. ( 1996; ). C/EBP activators are required for HIV-1 replication and proviral induction in monocytic cell lines. Immunity 5, 91–101.[CrossRef]
    [Google Scholar]
  11. Herchenroder, O., Hahne, J. C., Meyer, W. K., Thiesen, H. J. & Schneider, J. ( 1999; ). Repression of the human immunodeficiency virus type 1 promoter by the human KRAB domain results in inhibition of virus production. Biochim Biophys Acta 1445, 216–223.[CrossRef]
    [Google Scholar]
  12. Hoover, T., Mikovits, J., Court, D., Liu, Y. L., Kung, H. F. & Raziuddin ( 1996; ). A nuclear matrix-specific factor that binds a specific segment of the negative regulatory element (NRE) of HIV-1 LTR and inhibits NF-κB activity. Nucleic Acids Res 24, 1895–1900.[CrossRef]
    [Google Scholar]
  13. Isalan, M., Klug, A. & Choo, Y. ( 2001; ). A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat Biotechnol 19, 656–660.[CrossRef]
    [Google Scholar]
  14. Patarca, R., Freeman, G. J., Schwartz, J., Singh, R. P., Kong, Q. T., Murphy, E., Anderson, Y., Sheng, F. Y., Singh, P. & other authors ( 1988; ). rpt-1, an intracellular protein from helper/inducer T cells that regulates gene expression of interleukin 2 receptor and human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 85, 2733–2737.[CrossRef]
    [Google Scholar]
  15. Pengue, G., Caputo, A., Rossi, C., Barbanti-Brodano, G. & Lania, L. ( 1995; ). Transcriptional silencing of human immunodeficiency virus type 1 long terminal repeat-driven gene expression by the Kruppel-associated box repressor domain targeted to the transactivating response element. J Virol 69, 6577–6580.
    [Google Scholar]
  16. Ray, R. B. & Srinivas, R. V. ( 1997; ). Inhibition of human immunodeficiency virus type 1 replication by a cellular transcriptional factor MBP-1. J Cell Biochem 64, 565–572.[CrossRef]
    [Google Scholar]
  17. Reynolds, L., Ullman, C., Moore, M., Isalan, M., West, M. J., Clapham, P., Klug, A. & Choo, Y. ( 2003; ). Repression of the HIV-1 5′ LTR promoter and inhibition of HIV-1 replication by using engineered zinc-finger transcription factors. Proc Natl Acad Sci U S A 100, 1615–1620.[CrossRef]
    [Google Scholar]
  18. Saito, H., Fujiwara, T., Takahashi, E. I., Shin, S., Okui, K. & Nakamura, Y. ( 1996; ). Isolation and mapping of a novel human gene encoding a protein containing zinc-finger structures. Genomics 31, 376–379.[CrossRef]
    [Google Scholar]
  19. Sawadogo, M., Van Dyke, M. W., Gregor, P. D. & Roeder, R. G. ( 1988; ). Multiple forms of the human gene-specific transcription factor USF. I. Complete purification and identification of USF from HeLa cell nuclei. J Biol Chem 263, 11985–11993.
    [Google Scholar]
  20. Sieweke, M. H., Tekotte, H., Jarosch, U. & Graf, T. ( 1998; ). Cooperative interaction of ets-1 with USF-1 required for HIV-1 enhancer activity in T cells. EMBO J 17, 1728–1739.[CrossRef]
    [Google Scholar]
  21. Subler, M. A., Martin, D. W. & Deb, S. ( 1994; ). Activation of the human immunodeficiency virus type 1 long terminal repeat by transforming mutants of human p53. J Virol 68, 103–110.
    [Google Scholar]
  22. Subramani, S., Mulligan, R. & Berg, P. ( 1981; ). Expression of the mouse dihydrofolate reductase complementary deoxyribonucleic acid in simian virus 40 vectors. Mol Cell Biol 1, 854–864.
    [Google Scholar]
  23. Tesmer, V. M., Rajadhyaksha, A., Babin, J. & Bina, M. ( 1993; ). NF-IL6-mediated transcriptional activation of the long terminal repeat of the human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 90, 7298–7302.[CrossRef]
    [Google Scholar]
  24. Weiden, M., Tanaka, N., Qiao, Y., Zhao, B. Y., Honda, Y., Nakata, K., Canova, A., Levy, D. E., Rom, W. N. & Pine, R. ( 2000; ). Differentiation of monocytes to macrophages switches the Mycobacterium tuberculosis effect on HIV-1 replication from stimulation to inhibition: modulation of interferon response and CCAAT/enhancer binding protein β expression. J Immunol 165, 2028–2039.[CrossRef]
    [Google Scholar]
  25. Wu, H., Yang, W. P. & Barbas, C. F., III ( 1995; ). Building zinc fingers by selection: toward a therapeutic application. Proc Natl Acad Sci U S A 92, 344–348.[CrossRef]
    [Google Scholar]
  26. Yang, Z. & Engel, J. D. ( 1993; ). Human T cell transcription factor GATA-3 stimulates HIV-1 expression. Nucleic Acids Res 21, 2831–2836.[CrossRef]
    [Google Scholar]
  27. Zeichner, S. L., Kim, J. Y. & Alwine, J. C. ( 1991; ). Linker-scanning mutational analysis of the transcriptional activity of the human immunodeficiency virus type 1 long terminal repeat. J Virol 65, 2436–2444.
    [Google Scholar]
  28. Zhang, J. H., Chung, T. D. & Oldenburg, K. R. ( 1999; ). A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4, 67–73.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82066-0
Loading
/content/journal/jgv/10.1099/vir.0.82066-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error