1887

Abstract

The unspliced human immunodeficiency virus type 1 (HIV-1) RNA is both the messenger for Gag and Gag–Pol and the viral genomic RNA (vRNA) that is packaged into the virion. Although Gag alone is sufficient for the incorporation of vRNA into virus particles, Gag–Pol molecules play an important role in vRNA dimerization and virion maturation. Here, a model for vRNA packaging was demonstrated, in which nascent Gag–Pol molecules were preferentially co-encapsulated with their cognate RNA used as the template. Genome-incorporation frequencies were evaluated for two distinct HIV-1 proviral clones differing in their ability to respond to nevirapine (NVP) treatment in one round of infection. It was shown that, under NVP selection, there was a twofold-higher incorporation of vRNAs and integration of provirus genome carrying NVP resistance when compared with the wild-type counterpart. Although incorporation has been already demonstrated for Gag, the novelty of these findings is that newly acquired resistant mutations in Gag–Pol will select their specific genomic RNA during virus replication, thus rapidly increasing the chance of the emergence of resistant viruses during the course of anti-retroviral treatment.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82046-0
2006-09-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/9/2669.html?itemId=/content/journal/jgv/10.1099/vir.0.82046-0&mimeType=html&fmt=ahah

References

  1. Aldovini, A. & Young, R. A. ( 1990; ). Mutations of RNA and protein sequence involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J Virol 64, 1920–1926.
    [Google Scholar]
  2. Basyuk, E., Galli, T., Mougel, M., Blanchard, J.-M., Sitbon, M. & Bertrand, E. ( 2003; ). Retroviral genomic RNAs are transported to the plasma membrane by endosomal vesicles. Dev Cell 5, 161–174.[CrossRef]
    [Google Scholar]
  3. Berkowitz, R. D. & Goff, S. P. ( 1994; ). Analysis of binding elements in the human immunodeficiency virus type 1 genomic RNA and nucleocapsid protein. Virology 202, 233–246.[CrossRef]
    [Google Scholar]
  4. Berkowitz, R. D., Ohagen, Å., Höglund, S. & Goff, S. P. ( 1995; ). Retroviral nucleocapsid domains mediate the specific recognition of genomic viral RNAs by chimeric Gag polyproteins during RNA packaging in vivo. J Virol 69, 6445–6456.
    [Google Scholar]
  5. Berkowitz, R., Fisher, J. & Goff, S. P. ( 1996; ). RNA packaging. Curr Top Microbiol Immunol 214, 177–218.
    [Google Scholar]
  6. Butsch, M. & Boris-Lawrie, K. ( 2000; ). Translation is not required to generate virion precursor RNA in human immunodeficiency virus type 1-infected T cells. J Virol 74, 11531–11537.[CrossRef]
    [Google Scholar]
  7. Caride, E., Brindeiro, R., Hertogs, K. & 10 other authors ( 2000; ). Drug-resistant reverse transcriptase genotyping and phenotyping of B and non-B subtypes (F and A) of human immunodeficiency virus type I found in Brazilian patients failing HAART. Virology 275, 107–115.[CrossRef]
    [Google Scholar]
  8. Cen, S., Niu, M. & Kleiman, L. ( 2004; ). The connection domain in reverse transcriptase facilitates the in vivo annealing of tRNALys3 to HIV-1 genomic RNA. Retrovirology 1, 33.[CrossRef]
    [Google Scholar]
  9. Clever, J. L., Miranda, D., Jr & Parslow, T. G. ( 2002; ). RNA structure and packaging signals in the 5′ leader region of the human immunodeficiency virus type 1 genome. J Virol 76, 12381–12387.[CrossRef]
    [Google Scholar]
  10. Dang, Q., Chen, J., Unutmaz, D., Coffin, J. M., Pathak, V. K., Powell, D., KewalRamani, V. N., Maldarelli, F. & Hu, W.-S. ( 2004; ). Nonrandom HIV-1 infection and double infection via direct and cell-mediated pathways. Proc Natl Acad Sci U S A 101, 632–637.[CrossRef]
    [Google Scholar]
  11. Dorfman, T., Luban, J., Goff, S. P., Haseltine, W. A. & Göttlinger, H. G. ( 1993; ). Mapping of functionally important residues of a cysteine-histidine box in the human immunodeficiency virus type 1 nucleocapsid protein. J Virol 67, 6159–6169.
    [Google Scholar]
  12. Gilboa, E., Mitra, S. W., Goff, S. & Baltimore, D. ( 1979; ). A detailed model of reverse transcription and tests of crucial aspects. Cell 18, 93–100.[CrossRef]
    [Google Scholar]
  13. Gorelick, R. J., Chabot, D. J., Rein, A., Henderson, L. E. & Arthur, L. O. ( 1993; ). The two zinc fingers in the human immunodeficiency virus type 1 nucleocapsid protein are not functionally equivalent. J Virol 67, 4027–4036.
    [Google Scholar]
  14. Griffin, S. D. C., Allen, J. F. & Lever, A. M. L. ( 2001; ). The major human immunodeficiency virus type 2 (HIV-2) packaging signal is present on all HIV-2 RNA species: cotranslational RNA encapsidation and limitation of Gag protein confer specificity. J Virol 75, 12058–12069.[CrossRef]
    [Google Scholar]
  15. Halwani, R., Khorchid, A., Cen, S. & Kleiman, L. ( 2003; ). Rapid localization of Gag/GagPol complexes to detergent-resistant membrane during the assembly of human immunodeficiency virus type 1. J Virol 77, 3973–3984.[CrossRef]
    [Google Scholar]
  16. Hill, M. K., Hooker, C. W., Harrich, D., Crowe, S. M. & Mak, J. ( 2001; ). Gag-Pol supplied in trans is efficiently packaged and supports viral function in human immunodeficiency virus type 1. J Virol 75, 6835–6840.[CrossRef]
    [Google Scholar]
  17. Hooker, C. W. & Harrich, D. ( 2003; ). The first strand transfer reaction of HIV-1 reverse transcription is more efficient in infected cells than in cell-free natural endogenous reverse transcription reactions. J Clin Virol 26, 229–238.[CrossRef]
    [Google Scholar]
  18. Hooker, C. W., Lott, W. B. & Harrich, D. ( 2001; ). Inhibitors of human immunodeficiency virus type 1 reverse transcriptase target distinct phases of early reverse transcription. J Virol 75, 3095–3104.[CrossRef]
    [Google Scholar]
  19. Iglesias-Ussel, M. D., Casado, C., Yuste, E., Olivares, I. & López-Galíndez, C. ( 2002; ). In vitro analysis of human immunodeficiency virus type 1 resistance to nevirapine and fitness determination of resistant variants. J Gen Virol 83, 93–101.
    [Google Scholar]
  20. Jacks, T., Power, M. D., Masiarz, F. R., Luciw, P. A., Barr, P. J. & Varmus, H. E. ( 1988; ). Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 331, 280–283.[CrossRef]
    [Google Scholar]
  21. Jung, A., Maier, R., Vartanian, J.-P., Bocharov, G., Jung, V., Fischer, U., Meese, E., Wain-Hobson, S. & Meyerhans, A. ( 2002; ). Multiply infected spleen cells in HIV patients. Nature 418, 144.[CrossRef]
    [Google Scholar]
  22. Kaye, J. F. & Lever, A. M. L. ( 1999; ). Human immunodeficiency virus types 1 and 2 differ in the predominant mechanism used for selection of genomic RNA for encapsidation. J Virol 73, 3023–3031.
    [Google Scholar]
  23. Khorchid, A., Halwani, R., Wainberg, M. A. & Kleiman, L. ( 2002; ). Role of RNA in facilitating Gag/Gag-Pol interaction. J Virol 76, 4131–4137.[CrossRef]
    [Google Scholar]
  24. Levy, D. N., Aldrovandi, G. M., Kutsch, O. & Shaw, G. M. ( 2004; ). Dynamics of HIV-1 recombination in its natural target cells. Proc Natl Acad Sci U S A 101, 4204–4209.[CrossRef]
    [Google Scholar]
  25. Liang, C., Hu, J., Russell, R. S. & Wainberg, M. A. ( 2002; ). Translation of Pr55 gag augments packaging of human immunodeficiency virus type 1 RNA in a cis-acting manner. AIDS Res Hum Retroviruses 18, 1117–1126.[CrossRef]
    [Google Scholar]
  26. Liang, C., Hu, J., Russel, R. S., Kameoka, M. & Wainberg, M. A. ( 2004; ). Spliced human immunodeficiency virus type 1 RNA is reverse transcribed into cDNA within infected cells. AIDS Res Hum Retroviruses 20, 203–211.[CrossRef]
    [Google Scholar]
  27. McBride, M. S., Schwartz, M. D. & Panganiban, A. T. ( 1997; ). Efficient encapsidation of human immunodeficiency virus type 1 vectors and further characterization of cis elements required for encapsidation. J Virol 71, 4544–4554.
    [Google Scholar]
  28. Mulligan, R. C. & Berg, P. ( 1981; ). Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase. Proc Natl Acad Sci U S A 78, 2072–2076.[CrossRef]
    [Google Scholar]
  29. Page, K. A., Landau, N. R. & Littman, D. R. ( 1990; ). Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J Virol 64, 5270–5276.
    [Google Scholar]
  30. Poole, E., Strappe, P., Mok, H.-P., Hicks, R. & Lever, A. M. L. ( 2005; ). HIV-1 Gag–RNA interaction occurs at a perinuclear/centrosomal site; analysis by confocal microscopy and FRET. Traffic 6, 741–755.[CrossRef]
    [Google Scholar]
  31. Poon, D. T. K., Wu, J. & Aldovini, A. ( 1996; ). Charged amino acid residues of human immunodeficiency virus type 1 nucleocapsid p7 protein involved in RNA packaging and infectivity. J Virol 70, 6607–6616.
    [Google Scholar]
  32. Poon, D. T. K., Chertova, E. N. & Ott, D. E. ( 2002; ). Human immunodeficiency virus type 1 preferentially encapsidates genomic RNAs that encode Pr55Gag: functional linkage between translation and RNA packaging. Virology 293, 368–378.[CrossRef]
    [Google Scholar]
  33. Provitera, P., Goff, A., Harenberg, A., Bouamr, F., Carter, C. & Scarlata, S. ( 2001; ). Role of the major homology region in assembly of HIV-1 Gag. Biochemistry 40, 5565–5572.[CrossRef]
    [Google Scholar]
  34. Richman, D. D., Havlir, D., Corbeil, J. & 10 other authors ( 1994; ). Nevirapine resistance mutations of human immunodeficiency virus type 1 selected during therapy. J Virol 68, 1660–1666.
    [Google Scholar]
  35. Shehu-Xhilaga, M., Crowe, S. M. & Mak, J. ( 2001; ). Maintenance of the Gag/Gag-Pol ratio is important for human immunodeficiency virus type 1 RNA dimerization and viral infectivity. J Virol 75, 1834–1841.[CrossRef]
    [Google Scholar]
  36. Shehu-Xhilaga, M., Hill, M., Marshall, J. A., Kappes, J., Crowe, S. M. & Mak, J. ( 2002; ). The conformation of the mature dimeric human immunodeficiency virus type 1 RNA genome requires packaging of Pol protein. J Virol 76, 4331–4340.[CrossRef]
    [Google Scholar]
  37. Swanson, C. M., Puffer, B. A., Ahmad, K. M., Doms, R. W. & Malim, M. H. ( 2004; ). Retroviral mRNA nuclear export elements regulate protein function and virion assembly. EMBO J 23, 2632–2640.[CrossRef]
    [Google Scholar]
  38. Tanuri, A., Jesus da Costa, L., Brindeiro, R., Ramos, C. A., Pau, C.-P. & Rayfield, M. A. ( 2000; ). Construction of a selectable nef-defective live attenuated human immunodeficiency virus expressing Escherichia coli gpt gene. Virology 268, 79–86.[CrossRef]
    [Google Scholar]
  39. Zhang, Y. & Barklis, E. ( 1995; ). Nucleocapsid protein effects on the specificity of retrovirus RNA encapsidation. J Virol 69, 5716–5722.
    [Google Scholar]
  40. Zhang, H., Dornadula, G., Alur, P., Laughlin, M. A. & Pomerantz, R. J. ( 1996; ). Amphipathic domains in the C terminus of the transmembrane protein (gp41) permeabilize HIV-1 virions: a molecular mechanism underlying natural endogenous reverse transcription. Proc Natl Acad Sci U S A 93, 12519–12524.[CrossRef]
    [Google Scholar]
  41. Zhuang, J., Jetzt, A. E., Sun, G., Yu, H., Klarmann, G., Ron, Y., Preston, B. D. & Dougherty, J. P. ( 2002; ). Human immunodeficiency virus type 1 recombination: rate, fidelity, and putative hot spots. J Virol 76, 11273–11282.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82046-0
Loading
/content/journal/jgv/10.1099/vir.0.82046-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error