1887

Abstract

A Japanese isolate of nucleopolyhedrovirus (MabrNPV) was identified phylogenetically as a group II nucleopolyhedrovirus (NPV) that is related closely to other NPVs isolated from spp. based on nucleotide sequence data of its , and genes. The multiplication of MabrNPV in larvae was characterized following inoculation at various doses and in combination with the fluorescent brightener Tinopal by measuring temporal changes in the concentrations of its viral DNA using real-time quantitative PCR. The growth curves of budded-virus replication were analysed by fitting the data of viral DNA concentration in the host haemolymph to a modified Gompertz model. When fifth-instar larvae were inoculated with an LD equivalent dose of MabrNPV and Tinopal, the time lag between the onset of primary and secondary infection was estimated to be 25 h. Another 65 h was required to reach a plateau titre equivalent to a level of 10 virions ml in the haemolymph. All larvae died during the sixth instar following this inoculation regime. In contrast, following inoculation with a 1000-fold higher dose of MabrNPV and Tinopal, the time lag between the onset of primary and secondary infection was only 20 h. Subsequently, the same plateau titre was reached after a further 20 h. Following this inoculation regime, most larvae died during the fifth instar. Quantification of viral DNA by real-time quantitative PCR and application of the Gompertz model are valuable for the characterization of baculovirus replication .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81853-0
2006-06-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/6/1491.html?itemId=/content/journal/jgv/10.1099/vir.0.81853-0&mimeType=html&fmt=ahah

References

  1. Agui, N. & Hiruma, K. ( 1982; ). Ecdysteroid titer and its critical period during larval and pupal ecdysis in the cabbage armyworm, Mamestra brassicae L. (Lepidoptera: Noctuidae). Appl Entomol Zool 17, 144–146.
    [Google Scholar]
  2. Akutsu, K. ( 1972; ). The use of viruses for control of vegetable pests. Plant Prot 26, 19–23 (in Japanese).
    [Google Scholar]
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  4. Aruga, H., Yoshitake, N., Watanabe, H. & Hukuhara, T. ( 1960; ). Studies on nuclear polyhedrosis and their inductions in some Lepidoptera. Jpn J Appl Entomol Zool 4, 51–56 (in Japanese).[CrossRef]
    [Google Scholar]
  5. Bonning, B. C. ( 2005; ). Baculoviruses: biology, biochemistry, and molecular biology. In Comprehensive Molecular Insect Science, vol. 6, Control, pp. 233–270. Edited by L. I. Gilbert, K. Iatrou & S. S. Gill. San Diego, CA: Elsevier.
  6. Brown, D. A., Evans, H. F., Allen, C. J. & Kelly, D. C. ( 1981; ). Biological and biochemical investigations on five European isolates of Mamestra brassicae nuclear polyhedrosis virus. Arch Virol 69, 209–217.[CrossRef]
    [Google Scholar]
  7. Clarke, E. E., Tristem, M., Cory, J. S. & O'Reilly, D. R. ( 1996; ). Characterization of the ecdysteroid UDP-glucosyltransferase gene from Mamestra brassicae nucleopolyhedrovirus. J Gen Virol 77, 2865–2871.[CrossRef]
    [Google Scholar]
  8. Cory, J. S., Wilson, K. R., Hails, R. S. & O'Reilly, D. R. ( 2001; ). Host manipulation by insect pathogens: the effect of the baculovirus egt gene on the host–virus interaction. In Endocrine Interactions of Insect Parasites and Pathogens, pp. 233–244. Edited by J. P. Edwards & R. J. Weaver. Oxford: BIOS Scientific Publishers.
  9. Dai, X., Hajós, J. P., Joosten, N. N., van Oers, M. M., IJkel, W. F. J., Zuidema, D., Pang, Y. & Vlak, J. M. ( 2000; ). Isolation of a Spodoptera exigua baculovirus recombinant with a 10.6 kbp genome deletion that retains biological activity. J Gen Virol 81, 2545–2554.
    [Google Scholar]
  10. Doyle, C. J., Hirst, M. L., Cory, J. S. & Entwistle, P. F. ( 1990; ). Risk assessment studies: detailed host range testing of wild-type cabbage moth, Mamestra brassicae (Lepidoptera: Noctuidae), nuclear polyhedrosis virus. Appl Environ Microbiol 56, 2704–2710.
    [Google Scholar]
  11. Engelhard, E. K., Kam-Morgan, L. N. W., Washburn, J. O. & Volkman, L. E. ( 1994; ). The insect tracheal system: a conduit for the systemic spread of Autographa californica M nuclear polyhedrosis virus. Proc Natl Acad Sci U S A 91, 3224–3227.[CrossRef]
    [Google Scholar]
  12. Erlandson, M. A. ( 1990; ). Biological and biochemical comparison of Mamestra configurata and Mamestra brassicae nuclear polyhedrosis virus isolates pathogenic for the bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). J Invertebr Pathol 56, 47–56.[CrossRef]
    [Google Scholar]
  13. Evans, H. F. & Allaway, G. P. ( 1983; ). Dynamics of baculovirus growth and dispersal in Mamestra brassicae L. (Lepidoptera: Noctuidae) larval populations introduced into small cabbage plots. Appl Environ Microbiol 45, 493–501.
    [Google Scholar]
  14. Evans, H. F., Lomer, C. J. & Kelly, D. C. ( 1981; ). Growth of nuclear polyhedrosis virus in larvae of the cabbage moth, Mamestra brassicae L. Arch Virol 70, 207–214.[CrossRef]
    [Google Scholar]
  15. Finney, D. J. ( 1978; ). Statistical Methods in Biological Assay. London: Charles Griffin & Co.
  16. Goto, C., Minobe, Y. & Iizuka, T. ( 1992; ). Restriction endonuclease analysis and mapping of the genomes of granulosis viruses isolated from Xestia c-nigrum and five other noctuid species. J Gen Virol 73, 1491–1497.[CrossRef]
    [Google Scholar]
  17. Granados, R. R. & Lawler, K. A. ( 1981; ). In vivo pathway of Autographa californica baculovirus invasion and infection. Virology 108, 297–308.[CrossRef]
    [Google Scholar]
  18. Granados, R. R., Lawler, K. A. & Burand, J. P. ( 1981; ). Replication of Heliothis zea baculovirus in an insect cell line. Intervirology 16, 71–79.[CrossRef]
    [Google Scholar]
  19. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  20. Hara, K., Funakoshi, M., Tsuda, K. & Kawarabata, T. ( 1994; ). Susceptibility of lepidopteran cell lines to a Spodoptera exigua (Lepidoptera: Noctuidae) nuclear polyhedrosis virus. Appl Entomol Zool 29, 395–402.
    [Google Scholar]
  21. Herniou, E. A., Luque, T., Chen, X., Vlak, J. M., Winstanley, D., Cory, J. S. & O'Reilly, D. R. ( 2001; ). Use of whole genome sequence data to infer baculovirus phylogeny. J Virol 75, 8117–8126.[CrossRef]
    [Google Scholar]
  22. Ishii, T., Takatsuka, J., Nakai, M. & Kunimi, Y. ( 2002; ). Growth characteristics and competitive abilities of a nucleopolyhedrovirus and an entomopoxvirus in larvae of the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae). Biol Control 23, 96–105.[CrossRef]
    [Google Scholar]
  23. Jehle, J. A., Lange, M., Wang, H., Hu, Z., Wang, Y. & Hauschild, R. ( 2006; ). Molecular identification and phylogenetic analysis of baculoviruses from Lepidoptera. Virology 346, 180–193.[CrossRef]
    [Google Scholar]
  24. Kamita, S. G., Maeda, S. & Hammock, B. D. ( 2003; ). High-frequency homologous recombination between baculoviruses involves DNA replication. J Virol 77, 13053–13061.[CrossRef]
    [Google Scholar]
  25. Kelly, D. C. & Brown, D. A. ( 1980; ). Biochemical and biophysical properties of a Mamestra brassicae multiple enveloped nuclear polyhedrosis virus. Arch Virol 66, 133–141.[CrossRef]
    [Google Scholar]
  26. Knudson, D. L. & Tinsley, T. W. ( 1974; ). Replication of a nuclear polyhedrosis virus in a continuous cell culture of Spodoptera frugiperda: purification, assay of infectivity, and growth characteristics of the virus. J Virol 14, 934–944.
    [Google Scholar]
  27. Kondo, M., Funakoshi, M., Hara, K. & Kawarabata, T. ( 1995; ). Replication of a Mamestra brassicae nuclear polyhedrosis virus in a newly established Mamestra brassicae cell line. Acta Virol 39, 137–141.
    [Google Scholar]
  28. Kunimi, Y. & Yamada, E. ( 1990; ). Relationship of larval phase and susceptibility of the armyworm, Pseudaletia separata Walker (Lepidoptera: Noctuidae) to a nuclear polyhedrosis virus and granulosis virus. Appl Entomol Zool 25, 289–297.
    [Google Scholar]
  29. Kunimi, Y. & Fuxa, J. R. ( 1996; ). Volumes ingested by four species of noctuids with reference to peroral droplet bioassay of baculoviruses. J Invertebr Pathol 68, 310–311.[CrossRef]
    [Google Scholar]
  30. Lange, M., Wang, H., Zhihong, H. & Jehle, J. A. ( 2004; ). Towards a molecular identification and classification system of lepidopteran-specific baculoviruses. Virology 325, 36–47.[CrossRef]
    [Google Scholar]
  31. Li, L., Donly, C., Li, Q., Willis, L. G., Keddie, B. A., Erlandson, M. & Theilmann, D. A. ( 2002; ). Identification and genomic analysis of a second species of nucleopolyhedrovirus isolated from Mamestra configurata. Virology 297, 226–244.[CrossRef]
    [Google Scholar]
  32. Li, L., Li, Q., Willis, L. G., Erlandson, M. A., Theilmann, D. A. & Donly, C. ( 2005; ). Complete comparative genomic analysis of two field isolates of Mamestra configurata nucleopolyhedrovirus-A. J Gen Virol 86, 91–105.[CrossRef]
    [Google Scholar]
  33. Lo, H.-R. & Chao, Y.-C. ( 2004; ). Rapid titer determination of baculovirus by quantitative real-time polymerase chain reaction. Biotechnol Prog 20, 354–360.
    [Google Scholar]
  34. Lung, O. Y., Cruz-Alvarez, M. & Blissard, G. W. ( 2003; ). Ac23, an envelope fusion protein homolog in the baculovirus Autographa californica multicapsid nucleopolyhedrovirus, is a viral pathogenicity factor. J Virol 77, 328–339.[CrossRef]
    [Google Scholar]
  35. Monsma, S. A., Oomens, A. G. P. & Blissard, G. W. ( 1996; ). The GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. J Virol 70, 4607–4616.
    [Google Scholar]
  36. Mukawa, S., Nakai, M., Okuno, S., Takatsuka, J. & Kunimi, Y. ( 2003; ). Nucleopolyhedrovirus enhancement by a fluorescent brightener in Mythimna separata (Lepidoptera: Noctuidae). Appl Entomol Zool 38, 87–96.[CrossRef]
    [Google Scholar]
  37. Nakai, M., Goto, C., Shiotsuki, T. & Kunimi, Y. ( 2002; ). Granulovirus prevents pupation and retards development of Adoxophyes honmai larvae. Physiol Entomol 27, 157–164.[CrossRef]
    [Google Scholar]
  38. Nei, M. & Kumar, S. ( 2000; ). Molecular Evolution and Phylogenetics. New York: Oxford University Press.
  39. Okada, M. ( 1977; ). Studies on the utilization and mass production of Spodoptera litura nuclear polyhedrosis virus for control of the tobacco cutworm, Spodoptera litura Fabricius. Bull Chugoku Agric Exp Stn Ser E 12, 1–66 (in Japanese). http://rms1.agsearch.agropedia.affrc.go.jp/contents/JASI/pdf/digicon/rreport/report/cgk/cgk1977-E12-1.pdf
    [Google Scholar]
  40. Okuno, S., Takatsuka, J., Nakai, M., Ototake, S., Masui, A. & Kunimi, Y. ( 2003; ). Viral-enhancing activity of various stilbene-derived brighteners for a Spodoptera litura (Lepidoptera: Noctuidae) nucleopolyhedrovirus. Biol Control 26, 146–152.[CrossRef]
    [Google Scholar]
  41. Oomens, A. G. P. & Blissard, G. W. ( 1999; ). Requirement for GP64 to drive efficient budding of Autographa californica multicapsid nucleopolyhedrovirus. Virology 254, 297–314.[CrossRef]
    [Google Scholar]
  42. Riegel, C. I. & Slavicek, J. M. ( 1997; ). Characterization of the replication cycle of the Lymantria dispar nuclear polyhedrosis virus. Virus Res 51, 9–17.[CrossRef]
    [Google Scholar]
  43. Rosinski, M., Reid, S. & Nielsen, L. K. ( 2002; ). Kinetics of baculovirus replication and release using real-time quantitative polymerase chain reaction. Biotechnol Bioeng 77, 476–480.[CrossRef]
    [Google Scholar]
  44. Rovesti, L., Crook, N. E. & Winstanley, D. ( 2000; ). Biological and biochemical relationships between the nucleopolyhedroviruses of Mamestra brassicae and Heliothis armigera. J Invertebr Pathol 75, 2–8.[CrossRef]
    [Google Scholar]
  45. Schlink, K. & Reski, R. ( 2002; ). Preparing high-quality DNA from moss (Physcomitrella patens). Plant Mol Biol Rep 20, 423a–423f.[CrossRef]
    [Google Scholar]
  46. Slavicek, J. M., Popham, H. J. R. & Riegel, C. I. ( 1999; ). Deletion of the Lymantria dispar multicapsid nucleopolyhedrovirus ecdysteroid UDP-glucosyl transferase gene enhances viral killing speed in the last instar of the gypsy moth. Biol Control 16, 91–103.[CrossRef]
    [Google Scholar]
  47. Smith, I. R. L. & Crook, N. E. ( 1988; ). In vivo isolation of baculovirus genotypes. Virology 166, 240–244.[CrossRef]
    [Google Scholar]
  48. Sokal, R. R. & Rohlf, F. J. ( 1981; ). Biometry. New York: Freeman.
  49. Sun, X., Chen, X., Zhang, Z., Wang, H., Bianchi, F. J. J. A., Peng, H., Vlak, J. M. & Hu, Z. ( 2002; ). Bollworm responses to release of genetically modified Helicoverpa armigera nucleopolyhedroviruses in cotton. J Invertebr Pathol 81, 63–69.[CrossRef]
    [Google Scholar]
  50. Sun, X., Wang, H., Sun, X. & 7 other authors ( 2004; ). Biological activity and field efficacy of a genetically modified Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus expressing an insect-selective toxin from a chimeric promoter. Biol Control 29, 124–137.[CrossRef]
    [Google Scholar]
  51. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  52. Trudeau, D., Washburn, J. O. & Volkman, L. E. ( 2001; ). Central role of hemocytes in Autographa californica M nucleopolyhedrovirus pathogenesis in Heliothis virescens and Helicoverpa zea. J Virol 75, 996–1003.[CrossRef]
    [Google Scholar]
  53. Vanarsdall, A. L., Okano, K. & Rohrmann, G. F. ( 2005; ). Characterization of the replication of a baculovirus mutant lacking the DNA polymerase gene. Virology 331, 175–180.[CrossRef]
    [Google Scholar]
  54. van Beek, N., Hughes, P. R. & Wood, H. A. ( 2000; ). Effects of incubation temperature on the dose–survival time relationship of Trichoplusia ni larvae infected with Autographa californica nucleopolyhedrovirus. J Invertebr Pathol 76, 185–190.[CrossRef]
    [Google Scholar]
  55. Vlak, J. M. & Gröner, A. ( 1980; ). Identification of two nuclear polyhedrosis viruses from the cabbage moth, Mamestra brassicae (Lepidoptera: Noctuidae). J Invertebr Pathol 35, 269–278.[CrossRef]
    [Google Scholar]
  56. Wang, P. & Granados, R. R. ( 2000; ). Calcofluor disrupts the midgut defense system in insects. Insect Biochem Mol Biol 30, 135–143.[CrossRef]
    [Google Scholar]
  57. Washburn, J. O., Kirkpatrick, B. A. & Volkman, L. E. ( 1995; ). Comparative pathogenesis of Autographa californica M nuclear polyhedrosis virus in larvae of Trichoplusia ni and Heliothis virescens. Virology 209, 561–568.[CrossRef]
    [Google Scholar]
  58. Washburn, J. O., Kirkpatrick, B. A., Haas-Stapleton, E. & Volkman, L. E. ( 1998; ). Evidence that the stilbene-derived optical brightener M2R enhances Autographa californica M nucleopolyhedrovirus infection of Trichoplusia ni and Heliothis virescens by preventing sloughing of infected midgut epithelial cells. Biol Control 11, 58–69.[CrossRef]
    [Google Scholar]
  59. Washburn, J. O., Wong, J. F. & Volkman, L. E. ( 2001; ). Comparative pathogenesis of Helicoverpa zea S nucleopolyhedrovirus in noctuid larvae. J Gen Virol 82, 1777–1784.
    [Google Scholar]
  60. Washburn, J. O., Trudeau, D., Wong, J. F. & Volkman, L. E. ( 2003; ). Early pathogenesis of Autographa californica multiple nucleopolyhedrovirus and Helicoverpa zea single nucleopolyhedrovirus in Heliothis virescens: a comparison of the ‘M’ and ‘S’ strategies for establishing fatal infection. J Gen Virol 84, 343–351.[CrossRef]
    [Google Scholar]
  61. Williams, G. V. & Faulkner, P. ( 1997; ). Cytological changes and viral morphogenesis during baculovirus infection. In The Baculoviruses, pp. 61–108. Edited by L. K. Miller. New York: Plenum.
  62. Zanotto, P. M. de A., Kessing, B. D. & Maruniak, J. E. ( 1993; ). Phylogenetic interrelationships among baculoviruses: evolutionary rates and host associations. J Invertebr Pathol 62, 147–164.[CrossRef]
    [Google Scholar]
  63. Zwietering, M. H., Jongenburger, I., Rombouts, F. M. & van 't Riet, K. ( 1990; ). Modeling of the bacterial growth curve. Appl Environ Microbiol 56, 1875–1881.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81853-0
Loading
/content/journal/jgv/10.1099/vir.0.81853-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error