1887

Abstract

(HCV) is a major cause of chronic hepatitis worldwide. Studies of the early steps of HCV infection have been hampered by the lack of convenient or models. Although several cell-surface molecules that mediate the binding of HCV envelope proteins to target cells have been identified, mechanisms of viral entry into human hepatocytes are still poorly understood. Vesicular stomatitis virus/HCV pseudotyped viruses expressing the HCV envelope glycoproteins on the viral envelope were generated and it was found that their entry into human hepatocytes required co-expression of E1 and E2 on the pseudotype surface. Neutralization of pseudotype infection by anti-HCV antibodies suggested that cellular entry was mediated by HCV envelope glycoproteins and by previously characterized cell-surface molecules, including CD81. An entry assay based on the release of a fluorochrome from labelled HCV pseudotypes provided evidence for a pH-dependent fusion of the pseudotype envelope with a cellular compartment. By using a panel of endocytosis inhibitors, it is postulated that penetration of HCV into primary cultures of hepatocytes takes place by clathrin-mediated endocytosis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81710-0
2006-09-01
2021-07-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/9/2583.html?itemId=/content/journal/jgv/10.1099/vir.0.81710-0&mimeType=html&fmt=ahah

References

  1. Agnello V., Ábel G., Elfahal M., Knight G. B., Zhang Q.-X. 1999; Hepatitis C virus and other Flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci U S A 96:12766–12771 [CrossRef]
    [Google Scholar]
  2. Alter H. J., Purcell R. H., Shih J. W., Melpolder J. C., Houghton M., Choo Q. L., Kuo G. 1989; Detection of antibody to hepatitis C virus in prospectively followed transfusion recipients with acute and chronic non-A, non-B hepatitis. N Engl J Med 321:1494–1500 [CrossRef]
    [Google Scholar]
  3. Andoh T., Kawamata H., Umatake M., Terasawa K., Takegami T., Ochiai H. 1998; Effect of bafilomycin A1 on the growth of Japanese encephalitis virus in Vero cells. J Neurovirol 4:627–631 [CrossRef]
    [Google Scholar]
  4. Barth H., Schäfer C., Adah M. I. & 10 other authors 2003; Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J Biol Chem 278:41003–41012 [CrossRef]
    [Google Scholar]
  5. Bartosch B., Dubuisson J., Cosset F.-L. 2003a; Infectious hepatitis C virus pseudo-particles containing functional E1–E2 envelope protein complexes. J Exp Med 197:633–642 [CrossRef]
    [Google Scholar]
  6. Bartosch B., Vitelli A., Granier C. & 7 other authors 2003b; Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J Biol Chem 278:41624–41630 [CrossRef]
    [Google Scholar]
  7. Brodsky F. M., Chen C. Y., Knuehl C., Towler M. C., Wakeham D. E. 2001; Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 17:517–568 [CrossRef]
    [Google Scholar]
  8. Buonocore L., Blight K. J., Rice C. M., Rose J. K. 2002; Characterization of vesicular stomatitis virus recombinants that express and incorporate high levels of hepatitis C virus glycoproteins. J Virol 76:6865–6872 [CrossRef]
    [Google Scholar]
  9. David P., Viollon C., Alexandre E., Azimzadeh A., Nicod L., Wolf P., Jaeck D., Boudjema K., Richert L. 1998; Metabolic capacities in cultured human hepatocytes obtained by a new isolating procedure from non-wedge small liver biopsies. Hum Exp Toxicol 17:544–553 [CrossRef]
    [Google Scholar]
  10. Deleersnyder V., Pillez A., Wychowski C., Blight K., Xu J., Hahn Y. S., Rice C. M., Dubuisson J. 1997; Formation of native hepatitis C virus glycoprotein complexes. J Virol 71:697–704
    [Google Scholar]
  11. Dubuisson J., Hsu H. H., Cheung R. C., Greenberg H. B., Russell D. G., Rice C. M. 1994; Formation and intracellular localization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia and Sindbis viruses. J Virol 68:6147–6160
    [Google Scholar]
  12. Flint M., McKeating J. A. 2000; The role of the hepatitis C virus glycoproteins in infection. Rev Med Virol 10:101–117 [CrossRef]
    [Google Scholar]
  13. Fredericksen B. L., Whitt M. A. 1995; Vesicular stomatitis virus glycoprotein mutations that affect membrane fusion activity and abolish virus infectivity. J Virol 69:1435–1443
    [Google Scholar]
  14. Gardner J. P., Durso R. J., Arrigale R. R., Donovan G. P., Maddon P. J., Dragic T., Olson W. C. 2003; L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. Proc Natl Acad Sci U S A 100:4498–4503 [CrossRef]
    [Google Scholar]
  15. Germi R., Crance J.-M., Garin D., Guimet J., Lortat-Jacob H., Ruigrok R. W. H., Zarski J.-P., Drouet E. 2002; Cellular glycosaminoglycans and low density lipoprotein receptor are involved in hepatitis C virus adsorption. J Med Virol 68:206–215 [CrossRef]
    [Google Scholar]
  16. Helenius A., Marsh M., White J. 1982; Inhibition of Semliki Forest virus penetration by lysosomotropic weak bases. J Gen Virol 58:47–61 [CrossRef]
    [Google Scholar]
  17. Hsu M., Zhang J., Flint M., Logvinoff C., Cheng-Mayer C., Rice C. M., McKeating J. A. 2003; Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci U S A 100:7271–7276 [CrossRef]
    [Google Scholar]
  18. Kien F., Abraham J.-D., Schuster C., Kieny M. P. 2003; Analysis of the subcellular localization of hepatitis C virus E2 glycoprotein in live cells using EGFP fusion proteins. J Gen Virol 84:561–566 [CrossRef]
    [Google Scholar]
  19. Kolykhalov A. A., Agapov E. V., Blight K. J., Mihalik K., Feinstone S. M., Rice C. M. 1997; Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 277:570–574 [CrossRef]
    [Google Scholar]
  20. Lagging L. M., Meyer K., Owens R. J., Ray R. 1998; Functional role of hepatitis C virus chimeric glycoproteins in the infectivity of pseudotyped virus. J Virol 72:3539–3546
    [Google Scholar]
  21. Lavillette D., Tarr A. W., Voisset C. & 7 other authors 2005; Characterization of host-range and cell entry properties of the major genotypes and subtypes of hepatitis C virus. Hepatology 41:265–274 [CrossRef]
    [Google Scholar]
  22. Lozach P.-Y., Lortat-Jacob H., de Lacroix de Lavalette A. & 9 other authors 2003; DC-SIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2. J Biol Chem 278:20358–20366 [CrossRef]
    [Google Scholar]
  23. Marsh M., Helenius A. 1980; Adsorptive endocytosis of Semliki Forest virus. J Mol Biol 142:439–454 [CrossRef]
    [Google Scholar]
  24. Masciopinto F., Freer G., Burgio V. L., Levy S., Galli-Stampino L., Bendinelli M., Houghton M., Abrignani S., Uematsu Y. 2002; Expression of human CD81 in transgenic mice does not confer susceptibility to hepatitis C virus infection. Virology 304:187–196 [CrossRef]
    [Google Scholar]
  25. Matsuura Y., Tani H., Suzuki K. & 8 other authors 2001; Characterization of pseudotype VSV possessing HCV envelope proteins. Virology 286:263–275 [CrossRef]
    [Google Scholar]
  26. Meyer K., Basu A., Ray R. 2000; Functional features of hepatitis C virus glycoproteins for pseudotype virus entry into mammalian cells. Virology 276:214–226 [CrossRef]
    [Google Scholar]
  27. Michalak J.-P., Wychowski C., Choukhi A., Meunier J.-C., Ung S., Rice C. M., Dubuisson J. 1997; Characterization of truncated forms of hepatitis C virus glycoproteins. J Gen Virol 78:2299–2306
    [Google Scholar]
  28. Orlandi P. A., Fishman P. H. 1998; Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 141:905–915 [CrossRef]
    [Google Scholar]
  29. Owens R. J., Rose J. K. 1993; Cytoplasmic domain requirement for incorporation of a foreign envelope protein into vesicular stomatitis virus. J Virol 67:360–365
    [Google Scholar]
  30. Petracca R., Falugi F., Galli G. & 9 other authors 2000; Structure-function analysis of hepatitis C virus envelope-CD81 binding. J Virol 74:4824–4830 [CrossRef]
    [Google Scholar]
  31. Pileri P., Uematsu Y., Campagnoli S. & 8 other authors 1998; Binding of hepatitis C virus to CD81. Science 282:938–941 [CrossRef]
    [Google Scholar]
  32. Pöhlmann S., Zhang J., Baribaud F. & 7 other authors 2003; Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J Virol 77:4070–4080 [CrossRef]
    [Google Scholar]
  33. Robison C. S., Whitt M. A. 2000; The membrane-proximal stem region of vesicular stomatitis virus G protein confers efficient virus assembly. J Virol 74:2239–2246 [CrossRef]
    [Google Scholar]
  34. Salisbury J. L., Condeelis J. S., Satir P. 1980; Role of coated vesicles, microfilaments, and calmodulin in receptor-mediated endocytosis by cultured B lymphoblastoid cells. J Cell Biol 87:132–141 [CrossRef]
    [Google Scholar]
  35. Sasaki M., Yamauchi K., Nakanishi T., Kamogawa Y., Hayashi N. 2003; In vitro binding of hepatitis C virus to CD81-positive and -negative human cell lines. J Gastroenterol Hepatol 18:74–79 [CrossRef]
    [Google Scholar]
  36. Saunier B., Triyatni M., Ulianich L., Maruvada P., Yen P., Kohn L. D. 2003; Role of the asialoglycoprotein receptor in binding and entry of hepatitis C virus structural proteins in cultured human hepatocytes. J Virol 77:546–559 [CrossRef]
    [Google Scholar]
  37. Scarselli E., Ansuini H., Cerino R. & 7 other authors 2002; The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 21:5017–5025 [CrossRef]
    [Google Scholar]
  38. Schnitzer T. J., Dickson C., Weiss R. A. 1979; Morphological and biochemical characterization of viral particles produced by the tsO 45 mutant of vesicular stomatitis virus at restrictive temperature. J Virol 29:185–195
    [Google Scholar]
  39. Seong Y. R., Lee C.-H., Im D.-S. 1998; Characterization of the structural proteins of hepatitis C virus expressed by an adenovirus recombinant. Virus Res 55:177–185 [CrossRef]
    [Google Scholar]
  40. Stan R.-V. 2002; Structure and function of endothelial caveolae. Microsc Res Tech 57:350–364 [CrossRef]
    [Google Scholar]
  41. Superti F., Seganti L., Ruggeri F. M., Tinari A., Donelli G., Orsi N. 1987; Entry pathway of vesicular stomatitis virus into different host cells. J Gen Virol 68:387–399 [CrossRef]
    [Google Scholar]
  42. Takikawa S., Ishii K., Aizaki H., Suzuki T., Asakura H., Matsuura Y., Miyamura T. 2000; Cell fusion activity of hepatitis C virus envelope proteins. J Virol 74:5066–5074 [CrossRef]
    [Google Scholar]
  43. Thomsen P., Roepstorff K., Stahlhut M., van Deurs B. 2002; Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell 13:238–250 [CrossRef]
    [Google Scholar]
  44. Thomssen R., Bonk S., Propfe C., Heermann K. H., Kochel H. G., Uy A. 1992; Association of hepatitis C virus in human sera with beta-lipoprotein. Med Microbiol Immunol (Berl) 181:293–300 [CrossRef]
    [Google Scholar]
  45. Triyatni M., Saunier B., Maruvada P., Davis A. R., Ulianich L., Heller T., Patel A., Kohn L. D., Liang T. J. 2002; Interaction of hepatitis C virus-like particles and cells: a model system for studying viral binding and entry. J Virol 76:9335–9344 [CrossRef]
    [Google Scholar]
  46. Whitt M. A., Chong L., Rose J. K. 1989; Glycoprotein cytoplasmic domain sequences required for rescue of a vesicular stomatitis virus glycoprotein mutant. J Virol 63:3569–3578
    [Google Scholar]
  47. Whitt M. A., Zagouras P., Crise B., Rose J. K. 1990; A fusion-defective mutant of the vesicular stomatitis virus glycoprotein. J Virol 64:4907–4913
    [Google Scholar]
  48. Wünschmann S., Medh J. D., Klinzmann D., Schmidt W. N., Stapleton J. T. 2000; Characterization of hepatitis C virus (HCV) and HCV E2 interactions with CD81 and the low-density lipoprotein receptor. J Virol 74:10055–10062 [CrossRef]
    [Google Scholar]
  49. Zhang J., Randall G., Higginbottom A., Monk P., Rice C. M., McKeating J. A. 2004; CD81 is required for hepatitis C virus glycoprotein-mediated viral infection. J Virol 78:1448–1455 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81710-0
Loading
/content/journal/jgv/10.1099/vir.0.81710-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error