1887

Abstract

(HCV) is a major cause of chronic hepatitis worldwide. Studies of the early steps of HCV infection have been hampered by the lack of convenient or models. Although several cell-surface molecules that mediate the binding of HCV envelope proteins to target cells have been identified, mechanisms of viral entry into human hepatocytes are still poorly understood. Vesicular stomatitis virus/HCV pseudotyped viruses expressing the HCV envelope glycoproteins on the viral envelope were generated and it was found that their entry into human hepatocytes required co-expression of E1 and E2 on the pseudotype surface. Neutralization of pseudotype infection by anti-HCV antibodies suggested that cellular entry was mediated by HCV envelope glycoproteins and by previously characterized cell-surface molecules, including CD81. An entry assay based on the release of a fluorochrome from labelled HCV pseudotypes provided evidence for a pH-dependent fusion of the pseudotype envelope with a cellular compartment. By using a panel of endocytosis inhibitors, it is postulated that penetration of HCV into primary cultures of hepatocytes takes place by clathrin-mediated endocytosis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81710-0
2006-09-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/9/2583.html?itemId=/content/journal/jgv/10.1099/vir.0.81710-0&mimeType=html&fmt=ahah

References

  1. Agnello, V., Ábel, G., Elfahal, M., Knight, G. B. & Zhang, Q.-X. ( 1999; ). Hepatitis C virus and other Flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci U S A 96, 12766–12771.[CrossRef]
    [Google Scholar]
  2. Alter, H. J., Purcell, R. H., Shih, J. W., Melpolder, J. C., Houghton, M., Choo, Q. L. & Kuo, G. ( 1989; ). Detection of antibody to hepatitis C virus in prospectively followed transfusion recipients with acute and chronic non-A, non-B hepatitis. N Engl J Med 321, 1494–1500.[CrossRef]
    [Google Scholar]
  3. Andoh, T., Kawamata, H., Umatake, M., Terasawa, K., Takegami, T. & Ochiai, H. ( 1998; ). Effect of bafilomycin A1 on the growth of Japanese encephalitis virus in Vero cells. J Neurovirol 4, 627–631.[CrossRef]
    [Google Scholar]
  4. Barth, H., Schäfer, C., Adah, M. I. & 10 other authors ( 2003; ). Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J Biol Chem 278, 41003–41012.[CrossRef]
    [Google Scholar]
  5. Bartosch, B., Dubuisson, J. & Cosset, F.-L. ( 2003a; ). Infectious hepatitis C virus pseudo-particles containing functional E1–E2 envelope protein complexes. J Exp Med 197, 633–642.[CrossRef]
    [Google Scholar]
  6. Bartosch, B., Vitelli, A., Granier, C. & 7 other authors ( 2003b; ). Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J Biol Chem 278, 41624–41630.[CrossRef]
    [Google Scholar]
  7. Brodsky, F. M., Chen, C. Y., Knuehl, C., Towler, M. C. & Wakeham, D. E. ( 2001; ). Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 17, 517–568.[CrossRef]
    [Google Scholar]
  8. Buonocore, L., Blight, K. J., Rice, C. M. & Rose, J. K. ( 2002; ). Characterization of vesicular stomatitis virus recombinants that express and incorporate high levels of hepatitis C virus glycoproteins. J Virol 76, 6865–6872.[CrossRef]
    [Google Scholar]
  9. David, P., Viollon, C., Alexandre, E., Azimzadeh, A., Nicod, L., Wolf, P., Jaeck, D., Boudjema, K. & Richert, L. ( 1998; ). Metabolic capacities in cultured human hepatocytes obtained by a new isolating procedure from non-wedge small liver biopsies. Hum Exp Toxicol 17, 544–553.[CrossRef]
    [Google Scholar]
  10. Deleersnyder, V., Pillez, A., Wychowski, C., Blight, K., Xu, J., Hahn, Y. S., Rice, C. M. & Dubuisson, J. ( 1997; ). Formation of native hepatitis C virus glycoprotein complexes. J Virol 71, 697–704.
    [Google Scholar]
  11. Dubuisson, J., Hsu, H. H., Cheung, R. C., Greenberg, H. B., Russell, D. G. & Rice, C. M. ( 1994; ). Formation and intracellular localization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia and Sindbis viruses. J Virol 68, 6147–6160.
    [Google Scholar]
  12. Flint, M. & McKeating, J. A. ( 2000; ). The role of the hepatitis C virus glycoproteins in infection. Rev Med Virol 10, 101–117.[CrossRef]
    [Google Scholar]
  13. Fredericksen, B. L. & Whitt, M. A. ( 1995; ). Vesicular stomatitis virus glycoprotein mutations that affect membrane fusion activity and abolish virus infectivity. J Virol 69, 1435–1443.
    [Google Scholar]
  14. Gardner, J. P., Durso, R. J., Arrigale, R. R., Donovan, G. P., Maddon, P. J., Dragic, T. & Olson, W. C. ( 2003; ). L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. Proc Natl Acad Sci U S A 100, 4498–4503.[CrossRef]
    [Google Scholar]
  15. Germi, R., Crance, J.-M., Garin, D., Guimet, J., Lortat-Jacob, H., Ruigrok, R. W. H., Zarski, J.-P. & Drouet, E. ( 2002; ). Cellular glycosaminoglycans and low density lipoprotein receptor are involved in hepatitis C virus adsorption. J Med Virol 68, 206–215.[CrossRef]
    [Google Scholar]
  16. Helenius, A., Marsh, M. & White, J. ( 1982; ). Inhibition of Semliki Forest virus penetration by lysosomotropic weak bases. J Gen Virol 58, 47–61.[CrossRef]
    [Google Scholar]
  17. Hsu, M., Zhang, J., Flint, M., Logvinoff, C., Cheng-Mayer, C., Rice, C. M. & McKeating, J. A. ( 2003; ). Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci U S A 100, 7271–7276.[CrossRef]
    [Google Scholar]
  18. Kien, F., Abraham, J.-D., Schuster, C. & Kieny, M. P. ( 2003; ). Analysis of the subcellular localization of hepatitis C virus E2 glycoprotein in live cells using EGFP fusion proteins. J Gen Virol 84, 561–566.[CrossRef]
    [Google Scholar]
  19. Kolykhalov, A. A., Agapov, E. V., Blight, K. J., Mihalik, K., Feinstone, S. M. & Rice, C. M. ( 1997; ). Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 277, 570–574.[CrossRef]
    [Google Scholar]
  20. Lagging, L. M., Meyer, K., Owens, R. J. & Ray, R. ( 1998; ). Functional role of hepatitis C virus chimeric glycoproteins in the infectivity of pseudotyped virus. J Virol 72, 3539–3546.
    [Google Scholar]
  21. Lavillette, D., Tarr, A. W., Voisset, C. & 7 other authors ( 2005; ). Characterization of host-range and cell entry properties of the major genotypes and subtypes of hepatitis C virus. Hepatology 41, 265–274.[CrossRef]
    [Google Scholar]
  22. Lozach, P.-Y., Lortat-Jacob, H., de Lacroix de Lavalette, A. & 9 other authors ( 2003; ). DC-SIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2. J Biol Chem 278, 20358–20366.[CrossRef]
    [Google Scholar]
  23. Marsh, M. & Helenius, A. ( 1980; ). Adsorptive endocytosis of Semliki Forest virus. J Mol Biol 142, 439–454.[CrossRef]
    [Google Scholar]
  24. Masciopinto, F., Freer, G., Burgio, V. L., Levy, S., Galli-Stampino, L., Bendinelli, M., Houghton, M., Abrignani, S. & Uematsu, Y. ( 2002; ). Expression of human CD81 in transgenic mice does not confer susceptibility to hepatitis C virus infection. Virology 304, 187–196.[CrossRef]
    [Google Scholar]
  25. Matsuura, Y., Tani, H., Suzuki, K. & 8 other authors ( 2001; ). Characterization of pseudotype VSV possessing HCV envelope proteins. Virology 286, 263–275.[CrossRef]
    [Google Scholar]
  26. Meyer, K., Basu, A. & Ray, R. ( 2000; ). Functional features of hepatitis C virus glycoproteins for pseudotype virus entry into mammalian cells. Virology 276, 214–226.[CrossRef]
    [Google Scholar]
  27. Michalak, J.-P., Wychowski, C., Choukhi, A., Meunier, J.-C., Ung, S., Rice, C. M. & Dubuisson, J. ( 1997; ). Characterization of truncated forms of hepatitis C virus glycoproteins. J Gen Virol 78, 2299–2306.
    [Google Scholar]
  28. Orlandi, P. A. & Fishman, P. H. ( 1998; ). Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 141, 905–915.[CrossRef]
    [Google Scholar]
  29. Owens, R. J. & Rose, J. K. ( 1993; ). Cytoplasmic domain requirement for incorporation of a foreign envelope protein into vesicular stomatitis virus. J Virol 67, 360–365.
    [Google Scholar]
  30. Petracca, R., Falugi, F., Galli, G. & 9 other authors ( 2000; ). Structure-function analysis of hepatitis C virus envelope-CD81 binding. J Virol 74, 4824–4830.[CrossRef]
    [Google Scholar]
  31. Pileri, P., Uematsu, Y., Campagnoli, S. & 8 other authors ( 1998; ). Binding of hepatitis C virus to CD81. Science 282, 938–941.[CrossRef]
    [Google Scholar]
  32. Pöhlmann, S., Zhang, J., Baribaud, F. & 7 other authors ( 2003; ). Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J Virol 77, 4070–4080.[CrossRef]
    [Google Scholar]
  33. Robison, C. S. & Whitt, M. A. ( 2000; ). The membrane-proximal stem region of vesicular stomatitis virus G protein confers efficient virus assembly. J Virol 74, 2239–2246.[CrossRef]
    [Google Scholar]
  34. Salisbury, J. L., Condeelis, J. S. & Satir, P. ( 1980; ). Role of coated vesicles, microfilaments, and calmodulin in receptor-mediated endocytosis by cultured B lymphoblastoid cells. J Cell Biol 87, 132–141.[CrossRef]
    [Google Scholar]
  35. Sasaki, M., Yamauchi, K., Nakanishi, T., Kamogawa, Y. & Hayashi, N. ( 2003; ). In vitro binding of hepatitis C virus to CD81-positive and -negative human cell lines. J Gastroenterol Hepatol 18, 74–79.[CrossRef]
    [Google Scholar]
  36. Saunier, B., Triyatni, M., Ulianich, L., Maruvada, P., Yen, P. & Kohn, L. D. ( 2003; ). Role of the asialoglycoprotein receptor in binding and entry of hepatitis C virus structural proteins in cultured human hepatocytes. J Virol 77, 546–559.[CrossRef]
    [Google Scholar]
  37. Scarselli, E., Ansuini, H., Cerino, R. & 7 other authors ( 2002; ). The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 21, 5017–5025.[CrossRef]
    [Google Scholar]
  38. Schnitzer, T. J., Dickson, C. & Weiss, R. A. ( 1979; ). Morphological and biochemical characterization of viral particles produced by the tsO45 mutant of vesicular stomatitis virus at restrictive temperature. J Virol 29, 185–195.
    [Google Scholar]
  39. Seong, Y. R., Lee, C.-H. & Im, D.-S. ( 1998; ). Characterization of the structural proteins of hepatitis C virus expressed by an adenovirus recombinant. Virus Res 55, 177–185.[CrossRef]
    [Google Scholar]
  40. Stan, R.-V. ( 2002; ). Structure and function of endothelial caveolae. Microsc Res Tech 57, 350–364.[CrossRef]
    [Google Scholar]
  41. Superti, F., Seganti, L., Ruggeri, F. M., Tinari, A., Donelli, G. & Orsi, N. ( 1987; ). Entry pathway of vesicular stomatitis virus into different host cells. J Gen Virol 68, 387–399.[CrossRef]
    [Google Scholar]
  42. Takikawa, S., Ishii, K., Aizaki, H., Suzuki, T., Asakura, H., Matsuura, Y. & Miyamura, T. ( 2000; ). Cell fusion activity of hepatitis C virus envelope proteins. J Virol 74, 5066–5074.[CrossRef]
    [Google Scholar]
  43. Thomsen, P., Roepstorff, K., Stahlhut, M. & van Deurs, B. ( 2002; ). Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell 13, 238–250.[CrossRef]
    [Google Scholar]
  44. Thomssen, R., Bonk, S., Propfe, C., Heermann, K. H., Kochel, H. G. & Uy, A. ( 1992; ). Association of hepatitis C virus in human sera with beta-lipoprotein. Med Microbiol Immunol (Berl) 181, 293–300.[CrossRef]
    [Google Scholar]
  45. Triyatni, M., Saunier, B., Maruvada, P., Davis, A. R., Ulianich, L., Heller, T., Patel, A., Kohn, L. D. & Liang, T. J. ( 2002; ). Interaction of hepatitis C virus-like particles and cells: a model system for studying viral binding and entry. J Virol 76, 9335–9344.[CrossRef]
    [Google Scholar]
  46. Whitt, M. A., Chong, L. & Rose, J. K. ( 1989; ). Glycoprotein cytoplasmic domain sequences required for rescue of a vesicular stomatitis virus glycoprotein mutant. J Virol 63, 3569–3578.
    [Google Scholar]
  47. Whitt, M. A., Zagouras, P., Crise, B. & Rose, J. K. ( 1990; ). A fusion-defective mutant of the vesicular stomatitis virus glycoprotein. J Virol 64, 4907–4913.
    [Google Scholar]
  48. Wünschmann, S., Medh, J. D., Klinzmann, D., Schmidt, W. N. & Stapleton, J. T. ( 2000; ). Characterization of hepatitis C virus (HCV) and HCV E2 interactions with CD81 and the low-density lipoprotein receptor. J Virol 74, 10055–10062.[CrossRef]
    [Google Scholar]
  49. Zhang, J., Randall, G., Higginbottom, A., Monk, P., Rice, C. M. & McKeating, J. A. ( 2004; ). CD81 is required for hepatitis C virus glycoprotein-mediated viral infection. J Virol 78, 1448–1455.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81710-0
Loading
/content/journal/jgv/10.1099/vir.0.81710-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error