1887

Abstract

The importance of sialic acid for infection by avian (IBV) has been analysed. Neuraminidase treatment rendered Vero, baby hamster kidney and primary chicken kidney cells resistant to infection by the IBV-Beaudette strain. Sialic acid-dependent infection was also observed with strain M41 of IBV, which infects primary chicken kidney cells but not cells from other species. In comparison with and , IBV was most sensitive to pre-treatment of cells with neuraminidase. This finding suggests that IBV requires a greater amount of sialic acid on the cell surface to initiate an infection compared with the other two viruses. In previous studies, with respect to the haemagglutinating activity of IBV, it has been shown that the virus preferentially recognizes 2,3-linked sialic acid. In agreement with this finding, susceptibility to infection by IBV was connected to the expression of 2,3-linked sialic acid as indicated by the reactivity with the lectin agglutinin. Here, it is discussed that binding to sialic acid may be used by IBV for primary attachment to the cell surface; tighter binding and subsequent fusion between the viral and the cellular membrane may require interaction with a second receptor.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81651-0
2006-05-01
2020-08-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/5/1209.html?itemId=/content/journal/jgv/10.1099/vir.0.81651-0&mimeType=html&fmt=ahah

References

  1. Air, G. M. & Laver, W. G. ( 1989; ). The neuraminidase of influenza virus. Proteins 6, 341–356.[CrossRef]
    [Google Scholar]
  2. Bingham, R. W., Madge, M. H. & Tyrrell, D. A. ( 1975; ). Haemagglutination by avian infectious bronchitis virus – a coronavirus. J Gen Virol 28, 381–390.[CrossRef]
    [Google Scholar]
  3. Britton, P., Evans, S., Dove, B., Davies, M., Casais, R. & Cavanagh, D. ( 2005; ). Generation of a recombinant avian coronavirus infectious bronchitis virus using transient dominant selection. J Virol Methods 123, 203–211.[CrossRef]
    [Google Scholar]
  4. Casais, R., Dove, B., Cavanagh, D. & Britton, P. ( 2003; ). Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. J Virol 77, 9084–9089.[CrossRef]
    [Google Scholar]
  5. Cavanagh, D. ( 2003; ). Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathol 32, 567–582.[CrossRef]
    [Google Scholar]
  6. Compans, R. W. & Herrler, G. ( 2005; ). Epithelial cells and viral infection. In Mucosal Immunology, pp. 671–683. Edited by P. L. Ogra, J. Mestecky, M. E. Lamm, W. Strober, J. Bienenstock & J. R. McGhee. New York: Academic Press.
  7. Delmas, B., Gelfi, J., L'Haridon, R., Vogel, L. K., Sjostrom, H., Noren, O. & Laude, H. ( 1992; ). Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357, 417–420.[CrossRef]
    [Google Scholar]
  8. Hansen, G. H., Delmas, B., Besnardeau, L., Vogel, L. K., Laude, H., Sjostrom, H. & Noren, O. ( 1998; ). The coronavirus transmissible gastroenteritis virus causes infection after receptor-mediated endocytosis and acid-dependent fusion with an intracellular compartment. J Virol 72, 527–534.
    [Google Scholar]
  9. Herrler, G., Rott, R., Klenk, H. D., Muller, H. P., Shukla, A. K. & Schauer, R. ( 1985; ). The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. EMBO J 4, 1503–1506.
    [Google Scholar]
  10. Hodgson, T., Casais, R., Dove, B., Britton, P. & Cavanagh, D. ( 2004; ). Recombinant infectious bronchitis coronavirus Beaudette with the spike protein gene of the pathogenic M41 strain remains attenuated but induces protective immunity. J Virol 78, 13804–13811.[CrossRef]
    [Google Scholar]
  11. Hughes, M. T., Matrosovich, M., Rodgers, M. E., McGregor, M. & Kawaoka, Y. ( 2000; ). Influenza A viruses lacking sialidase activity can undergo multiple cycles of replication in cell culture, eggs, or mice. J Virol 74, 5206–5212.[CrossRef]
    [Google Scholar]
  12. Kärber, G. ( 1931; ). Calculation of the LD50 titer by the Kärber method. In Diagnostic Procedures for Viral, Rickettsial and Chlamydial Infections, pp. 34–35. Edited by E. H. Lennette & N. J. Schmidt. Washington, DC: American Public Health Association.
  13. Kazi, L., Lissenberg, A., Watson, R., de Groot, R. J. & Weiss, S. R. ( 2005; ). Expression of hemagglutinin esterase protein from recombinant murine hepatitis virus enhances neurovirulence. J Virol 79, 15064–15073.[CrossRef]
    [Google Scholar]
  14. Klenk, E., Faillard, H. & Lempfrid, H. ( 1955; ). Enzymatic effect of the influenza virus. Hoppe Seylers Z Physiol Chem 301, 235–246.[CrossRef]
    [Google Scholar]
  15. Krempl, C., Schultze, B., Laude, H. & Herrler, G. ( 1997; ). Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus. J Virol 71, 3285–3287.
    [Google Scholar]
  16. Krempl, C., Ballesteros, M. L., Zimmer, G., Enjuanes, L., Klenk, H. D. & Herrler, G. ( 2000; ). Characterization of the sialic acid binding activity of transmissible gastroenteritis coronavirus by analysis of haemagglutination-deficient mutants. J Gen Virol 81, 489–496.
    [Google Scholar]
  17. Li, W., Moore, M. J., Vasilieva, N. & 9 other authors ( 2003; ). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454.[CrossRef]
    [Google Scholar]
  18. Liu, S. & Kong, X. ( 2004; ). A new genotype of nephropathogenic infectious bronchitis virus circulating in vaccinated and non-vaccinated flocks in China. Avian Pathol 33, 321–327.[CrossRef]
    [Google Scholar]
  19. Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A. & Klenk, H. D. ( 2004; ). Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol 78, 12665–12667.[CrossRef]
    [Google Scholar]
  20. Miguel, B., Pharr, G. T. & Wang, C. ( 2002; ). The role of feline aminopeptidase N as a receptor for infectious bronchitis virus. Brief review. Arch Virol 147, 2047–2056.[CrossRef]
    [Google Scholar]
  21. Mockett, A. P. A., Cavanagh, D. & Brown, T. D. K. ( 1984; ). Monoclonal antibodies to the S1 spike and membrane proteins of avian infectious bronchitis virus strain Massachusetts M41. J Gen Virol 65, 2281–2286.[CrossRef]
    [Google Scholar]
  22. Nomura, R., Kiyota, A., Suzaki, E., Kataoka, K., Ohe, Y., Miyamoto, K., Senda, T. & Fujimoto, T. ( 2004; ). Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae. J Virol 78, 8701–8708.[CrossRef]
    [Google Scholar]
  23. Rogers, G. N. & Paulson, J. C. ( 1983; ). Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127, 361–373.[CrossRef]
    [Google Scholar]
  24. Schultze, B. & Herrler, G. ( 1992; ). Bovine coronavirus uses N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. J Gen Virol 73, 901–906.[CrossRef]
    [Google Scholar]
  25. Schultze, B., Gross, H. J., Brossmer, R., Klenk, H. D. & Herrler, G. ( 1990; ). Hemagglutinating encephalomyelitis virus attaches to N-acetyl-9-O-acetylneuraminic acid-containing receptors on erythrocytes: comparison with bovine coronavirus and influenza C virus. Virus Res 16, 185–194.[CrossRef]
    [Google Scholar]
  26. Schultze, B., Gross, H. J., Brossmer, R. & Herrler, G. ( 1991a; ). The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. J Virol 65, 6232–6237.
    [Google Scholar]
  27. Schultze, B., Wahn, K., Klenk, H. D. & Herrler, G. ( 1991b; ). Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity. Virology 180, 221–228.[CrossRef]
    [Google Scholar]
  28. Schultze, B., Cavanagh, D. & Herrler, G. ( 1992; ). Neuraminidase treatment of avian infectious bronchitis coronavirus reveals a hemagglutinating activity that is dependent on sialic acid-containing receptors on erythrocytes. Virology 189, 792–794.[CrossRef]
    [Google Scholar]
  29. Schultze, B., Krempl, C., Ballesteros, M. L., Shaw, L., Schauer, R., Enjuanes, L. & Herrler, G. ( 1996; ). Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity. J Virol 70, 5634–5637.
    [Google Scholar]
  30. Schwegmann-Wessels, C., Zimmer, G., Laude, H., Enjuanes, L. & Herrler, G. ( 2002; ). Binding of transmissible gastroenteritis coronavirus to cell surface sialoglycoproteins. J Virol 76, 6037–6043.[CrossRef]
    [Google Scholar]
  31. Tresnan, D. B., Levis, R. & Holmes, K. V. ( 1996; ). Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J Virol 70, 8669–8674.
    [Google Scholar]
  32. Vlasak, R., Luytjes, W., Leider, J., Spaan, W. & Palese, P. ( 1988a; ). The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. J Virol 62, 4686–4690.
    [Google Scholar]
  33. Vlasak, R., Luytjes, W., Spaan, W. & Palese, P. ( 1988b; ). Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc Natl Acad Sci U S A 85, 4526–4529.[CrossRef]
    [Google Scholar]
  34. Wang, P., Chen, J., Zheng, A. & 15 other authors ( 2004; ). Expression cloning of functional receptor used by SARS coronavirus. Biochem Biophys Res Commun 315, 439–444.[CrossRef]
    [Google Scholar]
  35. Williams, R. K., Jiang, G. S. & Holmes, K. V. ( 1991; ). Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc Natl Acad Sci U S A 88, 5533–5536.[CrossRef]
    [Google Scholar]
  36. Yeager, C. L., Ashmun, R. A., Williams, R. K., Cardellichio, C. B., Shapiro, L. H., Look, A. T. & Holmes, K. V. ( 1992; ). Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357, 420–422.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81651-0
Loading
/content/journal/jgv/10.1099/vir.0.81651-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error