1887

Abstract

Concurrent uncontrolled development of human immunodeficiency virus type 1 (HIV-1) and spp. is regarded as an emerging pathogenic combination in countries where human beings are exposed to these two micro-organisms. The present study was aimed at exploring whether HIV-1 development within a culture of human monocyte-derived macrophages (MDMs) affected the further development of luciferase-encoding using the luciferase activity as a readout assay. It was demonstrated that, in cultures of HIV-1-loaded MDMs exposed to axenic amastigotes, the luciferase activity was higher than in HIV-1-free MDMs. As a preliminary approach to deciphering the possible mechanism through which HIV-1 can affect , attention was focused on the very early processes that could underlie this increased luciferase activity. Using GFP-labelled parasites, it was possible to establish that, in HIV-1-infected MDMs, the percentage of GFP-expressing MDMs was higher (10–20 %) than in cell cultures not exposed to HIV-1 (5 %). Two-colour immunofluorescence staining suggested that HIV-1 indirectly affects the uptake of parasites inside MDMs. Thus, the observed phenomenon seems to be linked with a higher uptake of parasites within MDMs. Taken together, the data reported here may contribute to our understanding of disseminated infection in HIV-1-infected individuals.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81647-0
2006-05-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/5/1295.html?itemId=/content/journal/jgv/10.1099/vir.0.81647-0&mimeType=html&fmt=ahah

References

  1. Aderem, A. & Underhill, D. M. ( 1999; ). Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17, 593–623.[CrossRef]
    [Google Scholar]
  2. Alvar, J., Canavate, C., Gutierrez-Solar, B., Jimenez, M., Laguna, F., Lopez-Velez, R., Molina, R. & Moreno, J. ( 1997; ). Leishmania and human immunodeficiency virus coinfection: the first 10 years. Clin Microbiol Rev 10, 298–319.
    [Google Scholar]
  3. Barral-Netto, M. & Barral, A. ( 1994; ). Transforming growth factor-β in tegumentary leishmaniasis. Braz J Med Biol Res 27, 1–9.
    [Google Scholar]
  4. Bernier, R., Turco, S. J., Olivier, M. & Tremblay, M. ( 1995; ). Activation of human immunodeficiency virus type 1 in monocytoid cells by the protozoan parasite Leishmania donovani. J Virol 69, 7282–7285.
    [Google Scholar]
  5. Bernier, R., Barbeau, B., Tremblay, M. J. & Olivier, M. ( 1998; ). The lipophosphoglycan of Leishmania donovani up-regulates HIV-1 transcription in T cells through the nuclear factor-κB elements. J Immunol 160, 2881–2888.
    [Google Scholar]
  6. Biggs, B. A., Hewish, M., Kent, S., Hayes, K. & Crowe, S. M. ( 1995; ). HIV-1 infection of human macrophages impairs phagocytosis and killing of Toxoplasma gondii. J Immunol 154, 6132–6139.
    [Google Scholar]
  7. Boucher, N., McNicoll, F., Dumas, C. & Papadopoulou, B. ( 2002a; ). RNA polymerase I-mediated transcription of a reporter gene integrated into different loci of Leishmania. Mol Biochem Parasitol 119, 153–158.[CrossRef]
    [Google Scholar]
  8. Boucher, N., Wu, Y., Dumas, C., Dubé, M., Sereno, D., Breton, M. & Papadopoulou, B. ( 2002b; ). A common mechanism of stage-regulated gene expression in Leishmania mediated by a conserved 3′-untranslated region element. J Biol Chem 277, 19511–19520.[CrossRef]
    [Google Scholar]
  9. Bounou, S., Leclerc, J. E. & Tremblay, M. J. ( 2002; ). Presence of host ICAM-1 in laboratory and clinical strains of human immunodeficiency virus type 1 increases virus infectivity and CD4+-T-cell depletion in human lymphoid tissue, a major site of replication in vivo. J Virol 76, 1004–1014.[CrossRef]
    [Google Scholar]
  10. Chaturvedi, S., Frame, P. & Newman, S. L. ( 1995; ). Macrophages from human immunodeficiency virus-positive persons are defective in host defense against Histoplasma capsulatum. J Infect Dis 171, 320–327.[CrossRef]
    [Google Scholar]
  11. Crowe, S. M., Vardaxis, N. J., Kent, S. J., Maerz, A. L., Hewish, M. J., McGrath, M. S. & Mills, J. ( 1994; ). HIV infection of monocyte-derived macrophages in vitro reduces phagocytosis of Candida albicans. J Leukoc Biol 56, 318–327.
    [Google Scholar]
  12. Cunningham, A. C. ( 2002; ). Parasitic adaptive mechanisms in infection by Leishmania. Exp Mol Pathol 72, 132–141.[CrossRef]
    [Google Scholar]
  13. Dornadula, G., Zhang, H., Shetty, S. & Pomerantz, R. J. ( 1999; ). HIV-1 virions produced from replicating peripheral blood lymphocytes are more infectious than those from nonproliferating macrophages due to higher levels of intravirion reverse transcripts: implications for pathogenesis and transmission. Virology 253, 10–16.[CrossRef]
    [Google Scholar]
  14. El Fakhry, Y., Ouellette, M. & Papadopoulou, B. ( 2002; ). A proteomic approach to identify developmentally regulated proteins in Leishmania infantum. Proteomics 2, 1007–1017.[CrossRef]
    [Google Scholar]
  15. Engwerda, C. R., Murphy, M. L., Cotterell, S. E. J., Smelt, S. C. & Kaye, P. M. ( 1998; ). Neutralization of IL-12 demonstrates the existence of discrete organ-specific phases in the control of Leishmania donovani. Eur J Immunol 28, 669–680.[CrossRef]
    [Google Scholar]
  16. Greenway, A., Azad, A., Mills, J. & McPhee, D. ( 1996; ). Human immunodeficiency virus type 1 Nef binds directly to Lck and mitogen-activated protein kinase, inhibiting kinase activity. J Virol 70, 6701–6708.
    [Google Scholar]
  17. Guy, R. A. & Belosevic, M. ( 1993; ). Comparison of receptors required for entry of Leishmania major amastigotes into macrophages. Infect Immun 61, 1553–1558.
    [Google Scholar]
  18. Handman, E. & Bullen, D. V. R. ( 2002; ). Interaction of Leishmania with the host macrophage. Trends Parasitol 18, 332–334.[CrossRef]
    [Google Scholar]
  19. Horwitz, M. A. ( 1984; ). Phagocytosis of the Legionnaires' disease bacterium (Legionella pneumophila) occurs by a novel mechanism: engulfment within a pseudopod coil. Cell 36, 27–33.[CrossRef]
    [Google Scholar]
  20. Joiner, K. A., Fuhrman, S. A., Miettinen, H. M., Kasper, L. H. & Mellman, I. ( 1990; ). Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science 249, 641–646.[CrossRef]
    [Google Scholar]
  21. Jones, D. E., Elloso, M. M. & Scott, P. ( 1998; ). Host susceptibility factors to cutaneous leishmaniasis. Front Biosci 3, D1171–D1180.
    [Google Scholar]
  22. Kallenius, G., Koivula, T., Rydgard, K. J., Hoffner, S. E., Valentin, A., Asjo, B., Ljungh, C., Sharma, U. & Svenson, S. B. ( 1992; ). Human immunodeficiency virus type 1 enhances intracellular growth of Mycobacterium avium in human macrophages. Infect Immun 60, 2453–2458.
    [Google Scholar]
  23. Kane, M. M. & Mosser, D. M. ( 2000; ). Leishmania parasites and their ploys to disrupt macrophage activation. Curr Opin Hematol 7, 26–31.[CrossRef]
    [Google Scholar]
  24. Kane, M. M. & Mosser, D. M. ( 2001; ). The role of IL-10 in promoting disease progression in leishmaniasis. J Immunol 166, 1141–1147.[CrossRef]
    [Google Scholar]
  25. Kedzierska, K. & Crowe, S. M. ( 2002; ). The role of monocytes and macrophages in the pathogenesis of HIV-1 infection. Curr Med Chem 9, 1893–1903.[CrossRef]
    [Google Scholar]
  26. Kedzierska, K., Mak, J., Mijch, A. & 7 other authors ( 2000; ). Granulocyte-macrophage colony-stimulating factor augments phagocytosis of Mycobacterium avium complex by human immunodeficiency virus type 1-infected monocytes/macrophages in vitro and in vivo. J Infect Dis 181, 390–394.[CrossRef]
    [Google Scholar]
  27. Kedzierska, K., Mak, J., Jaworowski, A. & 8 other authors ( 2001; ). Nef-deleted HIV-1 inhibits phagocytosis by monocyte-derived macrophages in vitro but not by peripheral blood monocytes in vivo. AIDS 15, 945–955.[CrossRef]
    [Google Scholar]
  28. Kedzierska, K., Ellery, P., Mak, J., Lewin, S. R., Crowe, S. M. & Jaworowski, A. ( 2002; ). HIV-1 down-modulates γ signaling chain of FcγR in human macrophages: a possible mechanism for inhibition of phagocytosis. J Immunol 168, 2895–2903.[CrossRef]
    [Google Scholar]
  29. Kedzierska, K., Azzam, R., Ellery, P., Mak, J., Jaworowski, A. & Crowe, S. M. ( 2003a; ). Defective phagocytosis by human monocyte/macrophages following HIV-1 infection: underlying mechanisms and modulation by adjunctive cytokine therapy. J Clin Virol 26, 247–263.[CrossRef]
    [Google Scholar]
  30. Kedzierska, K., Churchill, M., Maslin, C. L. & 7 other authors ( 2003b; ). Phagocytic efficiency of monocytes and macrophages obtained from Sydney blood bank cohort members infected with an attenuated strain of HIV-1. J Acquir Immune Defic Syndr 34, 445–453.[CrossRef]
    [Google Scholar]
  31. Kedzierski, L., Montgomery, J., Bullen, D., Curtis, J., Gardiner, E., Jimenez-Ruiz, A. & Handman, E. ( 2004; ). A leucine-rich repeat motif of Leishmania parasite surface antigen 2 binds to macrophages through the complement receptor 3. J Immunol 172, 4902–4906.[CrossRef]
    [Google Scholar]
  32. Lee, T. H., Sunzeri, F. J., Tobler, L. H., Williams, B. G. & Busch, M. P. ( 1991; ). Quantitative assessment of HIV-1 DNA load by coamplification of HIV-1 gag and HLA-DQ-α genes. AIDS 5, 683–691.[CrossRef]
    [Google Scholar]
  33. Lee, C. H., Saksela, K., Mirza, U. A., Chait, B. T. & Kuriyan, J. ( 1996; ). Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain. Cell 85, 931–942.[CrossRef]
    [Google Scholar]
  34. Lopez-Velez, R., Perez-Molina, J. A., Guerrero, A., Baquero, F., Villarrubia, J., Escribano, L., Bellas, C., Perez-Corral, F. & Alvar, J. ( 1998; ). Clinicoepidemiologic characteristics, prognostic factors, and survival analysis of patients coinfected with human immunodeficiency virus and Leishmania in an area of Madrid, Spain. Am J Trop Med Hyg 58, 436–443.
    [Google Scholar]
  35. Love, D. C., Kane, M. M. & Mosser, D. M. ( 1998; ). Leishmania amazonensis: the phagocytosis of amastigotes by macrophages. Exp Parasitol 88, 161–171.[CrossRef]
    [Google Scholar]
  36. Marshall, J. D., Aste-Amézaga, M., Chehimi, S. S., Murphy, M., Olsen, H. & Trinchieri, G. ( 1999; ). Regulation of human IL-18 mRNA expression. Clin Immunol 90, 15–21.[CrossRef]
    [Google Scholar]
  37. Martinez, P., de la Vega, E., Laguna, F., Soriano, V., Puente, S., Moreno, V., Sentchordi, M. J., Garcia-Aguado, C. & González-Lahoz, J. ( 1993; ). Diagnosis of visceral leishmaniasis in HIV-infected individuals using peripheral blood smears. AIDS 7, 227–230.[CrossRef]
    [Google Scholar]
  38. Murphy, M. L., Wille, U., Villegas, E. N., Hunter, C. A. & Farrell, J. P. ( 2001; ). IL-10 mediates susceptibility to Leishmania donovani infection. Eur J Immunol 31, 2848–2856.[CrossRef]
    [Google Scholar]
  39. Murray, H. W., Rubin, B. Y. & Rothermel, C. D. ( 1983; ). Killing of intracellular Leishmania donovani by lymphokine-stimulated human mononuclear phagocytes. Evidence that interferon-γ is the activating lymphokine. J Clin Invest 72, 1506–1510.[CrossRef]
    [Google Scholar]
  40. Musher, D. M., Watson, D. A., Nickeson, D., Gyorkey, F., Lahart, C. & Rossen, R. D. ( 1990; ). The effect of HIV infection on phagocytosis and killing of Staphylococcus aureus by human pulmonary alveolar macrophages. Am J Med Sci 299, 158–163.[CrossRef]
    [Google Scholar]
  41. Pantaleo, G. & Fauci, A. S. ( 1995; ). New concepts in the immunopathogenesis of HIV infection. Annu Rev Immunol 13, 487–512.[CrossRef]
    [Google Scholar]
  42. Roilides, E., Holmes, A., Blake, C., Pizzo, P. A. & Walsh, T. J. ( 1993; ). Defective antifungal activity of monocyte-derived macrophages from human immunodeficiency virus-infected children against Aspergillus fumigatus. J Infect Dis 168, 1562–1565.[CrossRef]
    [Google Scholar]
  43. Roy, G., Dumas, C., Sereno, D., Wu, Y., Singh, A. K., Tremblay, M. J., Ouellette, M., Olivier, M. & Papadopoulou, B. ( 2000; ). Episomal and stable expression of the luciferase reporter gene for quantifying Leishmania spp. infections in macrophages and in animal models. Mol Biochem Parasitol 110, 195–206.[CrossRef]
    [Google Scholar]
  44. Sacks, D. & Noben-Trauth, N. ( 2002; ). The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2, 845–858.[CrossRef]
    [Google Scholar]
  45. Saksela, K., Cheng, G. & Baltimore, D. ( 1995; ). Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J 14, 484–491.
    [Google Scholar]
  46. Stafford, J. L., Neumann, N. F. & Belosevic, M. ( 2002; ). Macrophage-mediated innate host defense against protozoan parasites. Crit Rev Microbiol 28, 187–248.[CrossRef]
    [Google Scholar]
  47. St-Denis, A., Caouras, V., Gervais, F. & Descoteaux, A. ( 1999; ). Role of protein kinase C-α in the control of infection by intracellular pathogens in macrophages. J Immunol 163, 5505–5511.
    [Google Scholar]
  48. Swanson, J. A. & Baer, S. C. ( 1995; ). Phagocytosis by zippers and triggers. Trends Cell Biol 5, 89–93.[CrossRef]
    [Google Scholar]
  49. Thomas, C. A., Weinberger, O. K., Ziegler, B. L., Greenberg, S., Schieren, I., Silverstein, S. C. & El Khoury, J. ( 1997; ). Human immunodeficiency virus-1 env impairs Fcγ receptor-mediated phagocytosis via a cyclic adenosine monophosphate-dependent mechanism. Blood 90, 3760–3765.
    [Google Scholar]
  50. Underhill, D. M. & Ozinsky, A. ( 2002; ). Phagocytosis of microbes: complexity in action. Annu Rev Immunol 20, 825–852.[CrossRef]
    [Google Scholar]
  51. Wolday, D., Akuffo, H., Fessahaye, G., Valantine, A. & Britton, S. ( 1998; ). Live and killed human immunodeficiency virus type-1 increases the intracellular growth of Leishmania donovani in monocyte-derived cells. Scand J Infect Dis 30, 29–34.[CrossRef]
    [Google Scholar]
  52. Zhao, C., Papadopoulou, B. & Tremblay, M. J. ( 2004a; ). Leishmania infantum enhances human immunodeficiency virus type-1 replication in primary human macrophages through a complex cytokine network. Clin Immunol 113, 81–88.[CrossRef]
    [Google Scholar]
  53. Zhao, C., Papadopoulou, B. & Tremblay, M. J. ( 2004b; ). Leishmania infantum promotes replication of HIV type 1 in human lymphoid tissue cultured ex vivo by inducing secretion of the proinflammatory cytokines TNF-α and IL-1α. J Immunol 172, 3086–3093.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81647-0
Loading
/content/journal/jgv/10.1099/vir.0.81647-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error