1887

Abstract

The fingers subdomain of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is a hotspot for nucleoside analogue resistance mutations. Some multi-nucleoside analogue-resistant variants contain a T69S substitution along with dipeptide insertions between residues 69 and 70. This set of mutations usually co-exists with classic zidovudine-resistance mutations (e.g. M41L and T215Y) or an A62V mutation and confers resistance to multiple nucleoside analogue inhibitors. As insertions lie in the vicinity of the dNTP-binding pocket, their influence on RT fidelity was investigated. Commonly occurring insertion mutations were selected, i.e. T69S-AG, T69S-SG and T69S-SS alone, in combination with 3′-azido-2′,3′-deoxythymidine-resistance mutations M41L, L210W, R211K, L214F, T215Y (LAG and LSG) or with an alternate set where A62V substitution replaces M41L (VAG, VSG and VSS). Using a gapped duplex substrate, the forward mutation frequencies of recombinant wild-type and mutant RTs bearing each of the above sets of mutations were measured. All of the mutants displayed significant decreases in mutation frequencies. Whereas the dipeptide insertions alone showed the least decrease (4·0- to 7·5-fold), the VAG series showed an intermediate reduction (5·0- to 11·4-fold) and the LAG set showed the largest reduction in mutation frequencies (15·3- and 16·3-fold for LAG and LSG, respectively). Single dNTP exclusion assays for mutants LSG and LAG confirmed their large reduction in misincorporation efficiencies. The increased fidelity was not due to excision of the incorrect nucleotide via ATP-dependent removal. There was also no direct correlation between increased fidelity and template–primer affinity, suggesting a change in the active site that is conducive to better discrimination during dNTP insertion.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81458-0
2006-02-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/2/419.html?itemId=/content/journal/jgv/10.1099/vir.0.81458-0&mimeType=html&fmt=ahah

References

  1. Arion D., Kaushik N., McCormick S., Borkow G., Parniak M. A. 1998; Phenotypic mechanism of HIV-1 resistance to 3′-azido-3′-deoxythymidine (AZT): increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry 37:15908–15917 [CrossRef]
    [Google Scholar]
  2. Bebenek K., Kunkel T. A. 1995; Analyzing the fidelity of DNA polymerases. Methods Enzymol 262:217–232
    [Google Scholar]
  3. Boyer P. L., Ferris A. L., Hughes S. H. 1992; Cassette mutagenesis of the reverse transcriptase of human immunodeficiency virus type 1. J Virol 66:1031–1039
    [Google Scholar]
  4. Boyer P. L., Sarafianos S. G., Arnold E., Hughes S. H. 2001; Selective excision of AZTMP by drug-resistant human immunodeficiency virus reverse transcriptase. J Virol 75:4832–4842 [CrossRef]
    [Google Scholar]
  5. Boyer P. L., Sarafianos S. G., Arnold E., Hughes S. H. 2002; Nucleoside analog resistance caused by insertions in the fingers of human immunodeficiency virus type 1 reverse transcriptase involves ATP-mediated excision. J Virol 76:9143–9151 [CrossRef]
    [Google Scholar]
  6. Drosopoulos W. C., Prasad V. R. 1998; Increased misincorporation fidelity observed for nucleoside analog resistance mutations M184V and E89G in human immunodeficiency virus type 1 reverse transcriptase does not correlate with the overall error rate measured in vitro. J Virol 72:4224–4230
    [Google Scholar]
  7. Fisher T. S., Prasad V. R. 2002; Substitutions of Phe61 located in the vicinity of template 5′-overhang influence polymerase fidelity and nucleoside analog sensitivity of HIV-1 reverse transcriptase. J Biol Chem 277:22345–22352 [CrossRef]
    [Google Scholar]
  8. Fisher T. S., Joshi P., Prasad V. R. 2002; Mutations that confer resistance to template-analog inhibitors of human immunodeficiency virus (HIV) type 1 reverse transcriptase lead to severe defects in HIV replication. J Virol 76:4068–4072 [CrossRef]
    [Google Scholar]
  9. Gao Q., Gu Z., Parniak M. A., Cameron J., Cammack N., Boucher C., Wainberg M. A. 1993; The same mutation that encodes low-level human immunodeficiency virus type 1 resistance to 2′,3′-dideoxyinosine and 2′,3′-dideoxycytidine confers high-level resistance to the (−) enantiomer of 2′,3′-dideoxy-3′-thiacytidine. Antimicrob Agents Chemother 37:1390–1392 [CrossRef]
    [Google Scholar]
  10. Gu Z., Fletcher R. S., Arts E. J., Wainberg M. A., Parniak M. A. 1994; The K65R mutant reverse transcriptase of HIV-1 cross-resistant to 2′,3′-dideoxycytidine, 2′,3′-dideoxy-3′-thiacytidine, and 2′,3′-dideoxyinosine shows reduced sensitivity to specific dideoxynucleoside triphosphate inhibitors in vitro . J Biol Chem 269:28118–28122
    [Google Scholar]
  11. Gu Z., Salomon H., Cherrington J. M., Mulato A. S., Chen M. S., Yarchoan R., Foli A., Sogocio K. M., Wainberg M. A. 1995; K65R mutation of human immunodeficiency virus type 1 reverse transcriptase encodes cross-resistance to 9-(2-phosphonylmethoxyethyl)adenine. Antimicrob Agents Chemother 39:1888–1891 [CrossRef]
    [Google Scholar]
  12. Huang H., Chopra R., Verdine G. L., Harrison S. C. 1998; Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282:1669–1675 [CrossRef]
    [Google Scholar]
  13. Kew Y., Qingbin S., Prasad V. R. 1994; Subunit-selective mutagenesis of Glu-89 residue in human immunodeficiency virus reverse transcriptase. Contribution of p66 and p51 subunits to nucleoside analog sensitivity, divalent cation preference, and steady state kinetic properties. J Biol Chem 269:15331–15336
    [Google Scholar]
  14. Kew Y., Olsen L. R., Japour A. J., Prasad V. R. 1998; Insertions into the β 3– β 4 hairpin loop of HIV-1 reverse transcriptase reveal a role for fingers subdomain in processive polymerization. J Biol Chem 273:7529–7537 [CrossRef]
    [Google Scholar]
  15. Kim B., Hathaway T. R., Loeb L. A. 1998; Fidelity of mutant HIV-1 reverse transcriptases: interaction with the single-stranded template influences the accuracy of DNA synthesis. Biochemistry 37:5831–5839 [CrossRef]
    [Google Scholar]
  16. Kim B., Ayran J. C., Sagar S. G., Adman E. T., Fuller S. M., Tran N. H., Horrigan J. 1999; New human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) mutants with increased fidelity of DNA synthesis. Accuracy, template binding and processivity. J Biol Chem 274:27666–27673 [CrossRef]
    [Google Scholar]
  17. Lacey S. F., Reardon J. E., Furfine E. S., Kunkel T. A., Bebenek K., Eckert K. A., Kemp S. D., Larder B. A. 1992; Biochemical studies on the reverse transcriptase and RNase H activities from human immunodeficiency virus strains resistant to 3′-azido-3′-deoxythymidine. J Biol Chem 267:15789–15794
    [Google Scholar]
  18. Larder B. A., Kemp S. D. 1989; Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science 246:1155–1158 [CrossRef]
    [Google Scholar]
  19. Larder B. A., Darby G., Richman D. D. 1989; HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science 243:1731–1734 [CrossRef]
    [Google Scholar]
  20. Larder B. A., Bloor S., Kemp S. D. & 9 other authors 1999; A family of insertion mutations between codons 67 and 70 of human immunodeficiency virus type 1 reverse transcriptase confer multinucleoside analog resistance. Antimicrob Agents Chemother 43:1961–1967
    [Google Scholar]
  21. Le Grice S. F., Gruninger-Leitch F. 1990; Rapid purification of homodimer and heterodimer HIV-1 reverse transcriptase by metal chelate affinity chromatography. Eur J Biochem 187:307–314 [CrossRef]
    [Google Scholar]
  22. Lennerstrand J., Hertogs K., Stammers D. K., Larder B. A. 2001; Correlation between viral resistance to zidovudine and resistance at the reverse transcriptase level for a panel of human immunodeficiency virus type 1 mutants. J Virol 75:7202–7205 [CrossRef]
    [Google Scholar]
  23. Mansky L. M., Temin M. 1995; Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 69:5087–5094
    [Google Scholar]
  24. Mansky L. M., Bernard L. C. 2000; 3′-Azido-3′-deoxythymidine (AZT) and AZT-resistant reverse transcriptase can increase the in vivo mutation rate of human immunodeficiency virus type 1. J Virol 74:9532–9539 [CrossRef]
    [Google Scholar]
  25. Mansky L. M., Le Rouzic E., Benichou S., Gajary L. C. 2003; Influence of reverse transcriptase variants, drugs, and Vpr on human immunodeficiency virus type 1 mutant frequencies. J Virol 77:2071–2080 [CrossRef]
    [Google Scholar]
  26. Mas A., Parera M., Briones C., Soriano V., Martinez M. A., Domingo E., Menendez-Arias L. 2000; Role of a dipeptide insertion between codons 69 and 70 of HIV-1 reverse transcriptase in the mechanism of AZT resistance. EMBO J 19:5752–5761 [CrossRef]
    [Google Scholar]
  27. Meyer P. R., Matsuura S. E., So A. G., Scott W. A. 1998; Unblocking of chain-terminated primer by HIV-1 reverse transcriptase through a nucleotide-dependent mechanism. Proc Natl Acad Sci U S A 95:13471–13476 [CrossRef]
    [Google Scholar]
  28. Meyer P. R., Matsuura S. E., Mian A. M., So A. G., Scott W. A. 1999; A mechanism of AZT resistance: an increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase. Mol Cell 4:35–43 [CrossRef]
    [Google Scholar]
  29. Meyer P. R., Lennerstrand J., Matsuura S. E., Larder B. A., Scott W. A. 2003; Effects of dipeptide insertions between codons 69 and 70 of human immunodeficiency virus type 1 reverse transcriptase on primer unblocking, deoxynucleoside triphosphate inhibition, and DNA chain elongation. J Virol 77:3871–3877 [CrossRef]
    [Google Scholar]
  30. Pandey V. N., Kaushik N., Rege N., Sarafianos S. G., Yadav P. N., Modak M. J. 1996; Role of methionine 184 of human immunodeficiency virus type-1 reverse transcriptase in the polymerase function and fidelity of DNA synthesis. Biochemistry 35:2168–2179 [CrossRef]
    [Google Scholar]
  31. Preston B. D., Poiesz B. J., Loeb L. A. 1988; Fidelity of HIV-1 reverse transcriptase. Science 242:1168–1171 [CrossRef]
    [Google Scholar]
  32. Rezende L. F., Curr K., Ueno T., Mitsuya H., Prasad V. R. 1998; The impact of multidideoxynucleoside resistance-conferring mutations in human immunodeficiency virus type 1 reverse transcriptase on polymerase fidelity and error specificity. J Virol 72:2890–2895
    [Google Scholar]
  33. Rezende L. F., Kew Y., Prasad V. R. 2001; The effect of increased processivity on overall fidelity of human immunodeficiency virus type 1 reverse transcriptase. J Biomed Sci 8:197–205 [CrossRef]
    [Google Scholar]
  34. Richman D. D. 2001; HIV chemotherapy. Nature 410:995–1001 [CrossRef]
    [Google Scholar]
  35. Roberts J. D., Bebenek K., Kunkel T. A. 1988; The accuracy of reverse transcriptase from HIV-1. Science 242:1171–1173 [CrossRef]
    [Google Scholar]
  36. Sarafianos S. G., Das K., Clark A. D., Ding J., Jr, Boyer P. L., Hughes S. H., Arnold E. 1999; Lamivudine (3TC) resistance in HIV-1 reverse transcriptase involves steric hindrance with beta-branched amino acids. Proc Natl Acad Sci U S A 96:10027–10032 [CrossRef]
    [Google Scholar]
  37. Shah F., Curr K. A., Hamburgh M. E., Parniak M., Mitsuya H., Arnez J. G., Prasad V. R. 2000; Differential influence of nucleoside analog-resistance mutations K65R and L74V on the overall mutation rate and error specificity of human immunodeficiency virus type 1 reverse transcriptase. J Biol Chem 275:27037–27044
    [Google Scholar]
  38. Sharma B., Kaushik N., Upadhyay A., Tripathi S., Singh K., Pandey V. N. 2003; A positively charged side chain at position 154 on the beta8-alphaE loop of HIV-1 RT is required for stable ternary complex formation. Nucleic Acids Res 31:5167–5174 [CrossRef]
    [Google Scholar]
  39. Shirasaka T., Yarchoan R., O'Brien M. C., Husson R. N., Anderson B. D., Kojima E., Shimada T., Broder S., Mitsuya H. 1993; Changes in drug sensitivity of human immunodeficiency virus type 1 during therapy with azidothymidine, dideoxycytidine, and dideoxyinosine: an in vitro comparative study. Proc Natl Acad Sci U S A 90:562–566 [CrossRef]
    [Google Scholar]
  40. Shirasaka T., Kavlick M. F., Ueno T. & 8 other authors 1995; Emergence of human immunodeficiency virus type 1 variants with resistance to multiple dideoxynucleosides in patients receiving therapy with dideoxynucleosides. Proc Natl Acad Sci U S A 92:2398–2402 [CrossRef]
    [Google Scholar]
  41. St Clair M. H., Martin J. L., Tudor-Williams G., Bach M. C., Vavro C. L., King D. M., Kellam P., Kemp S. D., Larder B. A. 1991; Resistance to ddI and sensitivity to AZT induced by a mutation in HIV-1 reverse transcriptase. Science 253:1557–1559 [CrossRef]
    [Google Scholar]
  42. Winters M. A., Coolley K. L., Girard Y. A., Levee D. J., Hamdan H., Shafer R. W., Katzenstein D. A., Merigan T. C. 1998; A 6-basepair insert in the reverse transcriptase gene of human immunodeficiency virus type 1 confers resistance to multiple nucleoside inhibitors. J Clin Invest 102:1769–1775 [CrossRef]
    [Google Scholar]
  43. Winters M. A., Coolley K. L., Cheng P., Girard Y. A., Hamdan H., Kovari L. C., Merigan T. C. 2000; Genotypic, phenotypic, and modeling studies of a deletion in the beta3-beta4 region of the human immunodeficiency virus type 1 reverse transcriptase gene that is associated with resistance to nucleoside reverse transcriptase inhibitors. J Virol 74:10707–10713 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81458-0
Loading
/content/journal/jgv/10.1099/vir.0.81458-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error