1887

Abstract

Infection of domestic cats with (FIV) results in a fatal immunodeficiency disease, similar to (HIV-1) in humans. Elevated plasma viral loads in domestic cats are correlated to decreased survival time and disease progression. However, FIV is also maintained as an apathogenic infection in other members of the family Felidae including cougars, (FIV). It is not known whether the lack of disease in cougars is a result of diminished virus replication. A real-time PCR assay was developed to quantify both FIV proviral and plasma viral loads in naturally infected cougars. Proviral loads quantified from peripheral blood mononuclear cells (PBMC) ranged from 2·90×10 to 6·72×10 copies per 10 cells. Plasma viral loads ranged from 2·30×10 to 2·81×10 RNA copies ml. These data indicate that FIV viral loads are comparable to viral loads observed in endemic and epidemic lentivirus infections. Thus, the lack of disease in cougars is not due to low levels of virus replication. Moreover, significant differences observed among cougar PBMC proviral loads correlated to viral lineage and cougar age (=0·014), which suggests that separate life strategies exist within FIV lineages. This is the first study to demonstrate that an interaction of lentivirus lineage and host age significantly effect proviral loads.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81450-0
2006-04-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/4/967.html?itemId=/content/journal/jgv/10.1099/vir.0.81450-0&mimeType=html&fmt=ahah

References

  1. Beer, B., Scherer, J., zur Megede, J., Norley, S., Baier, M. & Kurth, R. ( 1996; ). Lack of dichotomy between virus load of peripheral blood and lymph nodes during long-term simian immunodeficiency virus infection of African green monkeys. Virology 219, 367–375.[CrossRef]
    [Google Scholar]
  2. Biek, R., Rodrigo, A. G., Holley, D., Drummond, A., Anderson, C. R., Jr, Ross, H. A. & Poss, M. ( 2003; ). Epidemiology, genetic diversity, and evolution of endemic feline immunodeficiency virus in a population of wild cougars. J Virol 77, 9578–9589.[CrossRef]
    [Google Scholar]
  3. Biek, R., Ruth, T. K., Murphy, K. M., Anderson, C. R. & Poss, M. ( 2005; ). Examining effects of persistent retrovirus infection on fitness and pathogen susceptibility in a natural feline host. Can J Zoo (in press).
    [Google Scholar]
  4. Biek, R., Drummond, A. & Poss, M. ( 2006; ). A virus reveals population structure and recent demographic history of its carnivore host. Science 311, 538–541.[CrossRef]
    [Google Scholar]
  5. Broussard, S. R., Staprans, S. I., White, R., Whitehead, E. M., Feinberg, M. B. & Allan, J. S. ( 2001; ). Simian immunodeficiency virus replicates to high levels in naturally infected African green monkeys without inducing immunologic or neurologic disease. J Virol 75, 2262–2275.[CrossRef]
    [Google Scholar]
  6. Brown, E. W., Yuhki, N., Packer, C. & O'Brien, S. J. ( 1994; ). A lion lentivirus related to feline immunodeficiency virus: epidemiologic and phylogenetic aspects. J Virol 68, 5953–5968.
    [Google Scholar]
  7. Burkhard, M. J. & Dean, G. A. ( 2003; ). Transmission and immunopathogenesis of FIV in cats as a model for HIV. Curr HIV Res 1, 15–29.[CrossRef]
    [Google Scholar]
  8. Burkhard, M. J., Obert, L. A., O'Neil, L. L., Diehl, L. J. & Hoover, E. A. ( 1997; ). Mucosal transmission of cell-associated and cell-free feline immunodeficiency virus. AIDS Res Hum Retroviruses 13, 347–355.[CrossRef]
    [Google Scholar]
  9. Carpenter, M. A. & O'Brien, S. J. ( 1995; ). Coadaptation and immunodeficiency virus: lessons from the Felidae. Curr Opin Genet Dev 5, 739–745.[CrossRef]
    [Google Scholar]
  10. Carpenter, M. A., Brown, E. W., Culver, M., Johnson, W. E., Pecon-Slattery, J., Brousset, D. & O'Brien, S. J. ( 1996; ). Genetic and phylogenetic divergence of feline immunodeficiency virus in the puma (Puma concolor). J Virol 70, 6682–6693.
    [Google Scholar]
  11. Cato, A. C., Skroch, P., Weinmann, J., Butkeraitis, P. & Ponta, H. ( 1988; ). DNA sequences outside the receptor-binding sites differently modulate the responsiveness of the mouse mammary tumour virus promoter to various steroid hormones. EMBO J 7, 1403–1410.
    [Google Scholar]
  12. Chakrabarti, L. A. ( 2004; ). The paradox of simian immunodeficiency virus infection in sooty mangabeys: active viral replication without disease progression. Front Biosci 9, 521–539.[CrossRef]
    [Google Scholar]
  13. Damond, F., Descamps, D., Farfara, I. & 7 other authors ( 2001; ). Quantification of proviral load of human immunodeficiency virus type 2 subtypes A and B using real-time PCR. J Clin Microbiol 39, 4264–4268.[CrossRef]
    [Google Scholar]
  14. Desire, N., Dehee, A., Schneider, V., Jacomet, C., Goujon, C., Girard, P. M., Rozenbaum, W. & Nicolas, J. C. ( 2001; ). Quantification of human immunodeficiency virus type 1 proviral load by a TaqMan real-time PCR assay. J Clin Microbiol 39, 1303–1310.[CrossRef]
    [Google Scholar]
  15. Diehl, L. J., Mathiason-Dubard, C. K., O'Neil, L. L. & Hoover, E. A. ( 1996; ). Plasma viral RNA load predicts disease progression in accelerated feline immunodeficiency virus infection. J Virol 70, 2503–2507.
    [Google Scholar]
  16. Fauci, A. S., Pantaleo, G., Stanley, S. & Weissman, D. ( 1996; ). Immunopathogenic mechanisms of HIV infection. Ann Intern Med 124, 654–663.[CrossRef]
    [Google Scholar]
  17. Gibellini, D., Vitone, F., Schiavone, P., Ponti, C., La Placa, M. & Re, M. C. ( 2004; ). Quantitative detection of human immunodeficiency virus type 1 (HIV-1) proviral DNA in peripheral blood mononuclear cells by SYBR green real-time PCR technique. J Clin Virol 29, 282–289.[CrossRef]
    [Google Scholar]
  18. Goldstein, S., Ourmanov, I., Brown, C. R., Beer, B. E., Elkins, W. R., Plishka, R., Buckler-White, A. & Hirsch, V. M. ( 2000; ). Wide range of viral load in healthy African green monkeys naturally infected with simian immunodeficiency virus. J Virol 74, 11744–11753.[CrossRef]
    [Google Scholar]
  19. Goto, Y., Nishimura, Y., Baba, K., Mizuno, T., Endo, Y., Masuda, K., Ohno, K. & Tsujimoto, H. ( 2002; ). Association of plasma viral RNA load with prognosis in cats naturally infected with feline immunodeficiency virus. J Virol 76, 10079–10083.[CrossRef]
    [Google Scholar]
  20. Gueye, A., Diop, O. M., Ploquin, M. J., Kornfeld, C., Faye, A., Cumont, M. C., Hurtrel, B., Barre-Sinoussi, F. & Muller-Trutwin, M. C. ( 2004; ). Viral load in tissues during the early and chronic phase of non-pathogenic SIVagm infection. J Med Primatol 33, 83–97.[CrossRef]
    [Google Scholar]
  21. Haase, A. T. ( 1999; ). Population biology of HIV-1 infection: viral and CD4+ T cell demographics and dynamics in lymphatic tissues. Annu Rev Immunol 17, 625–656.[CrossRef]
    [Google Scholar]
  22. Holzammer, S., Holznagel, E., Kaul, A., Kurth, R. & Norley, S. ( 2001; ). High virus loads in naturally and experimentally SIVagm-infected African green monkeys. Virology 283, 324–331.[CrossRef]
    [Google Scholar]
  23. Hufert, F. T., van Lunzen, J., Janossy, G., Bertram, S., Schmitz, J., Haller, O., Racz, P. & von Laer, D. ( 1997; ). Germinal centre CD4+ T cells are an important site of HIV replication in vivo. AIDS 11, 849–857.[CrossRef]
    [Google Scholar]
  24. Klein, D., Janda, P., Steinborn, R., Muller, M., Salmons, B. & Gunzburg, W. H. ( 1999; ). Proviral load determination of different feline immunodeficiency virus isolates using real-time polymerase chain reaction: influence of mismatches on quantification. Electrophoresis 20, 291–299.[CrossRef]
    [Google Scholar]
  25. Mellors, J. W., Rinaldo, C. R., Jr, Gupta, P., White, R. M., Todd, J. A. & Kingsley, L. A. ( 1996; ). Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272, 1167–1170.[CrossRef]
    [Google Scholar]
  26. Miksicek, R., Heber, A., Schmid, W., Danesch, U., Posseckert, G., Beato, M. & Schutz, G. ( 1986; ). Glucocorticoid responsiveness of the transcriptional enhancer of Moloney murine sarcoma virus. Cell 46, 283–290.[CrossRef]
    [Google Scholar]
  27. Muller-Trutwin, M. C., Corbet, S., Tavares, M. D., Herve, V. M., Nerrienet, E., Georges-Courbot, M. C., Saurin, W., Sonigo, P. & Barre-Sinoussi, F. ( 1996; ). The evolutionary rate of nonpathogenic simian immunodeficiency virus (SIVagm) is in agreement with a rapid and continuous replication in vivo. Virology 223, 89–102.[CrossRef]
    [Google Scholar]
  28. Olmsted, R. A., Langley, R., Roelke, M. E. & 12 other authors ( 1992; ). Worldwide prevalence of lentivirus infection in wild feline species: epidemiologic and phylogenetic aspects. J Virol 66, 6008–6018.
    [Google Scholar]
  29. Packer, C., Altizer, S., Appel, M., Brown, E., Martenson, J., O'Brien, S. J., Roelke-Parker, M., Hofmann-Lehmann, R. & Lutz, H. ( 1999; ). Viruses of the Serengeti: patterns of infection and mortality in African lions. J Anim Ecol 68, 1161–1178.[CrossRef]
    [Google Scholar]
  30. Pedersen, N. C., Ho, E. W., Brown, M. L. & Yamamoto, J. K. ( 1987; ). Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 235, 790–793.[CrossRef]
    [Google Scholar]
  31. Pedersen, N. C., Leutenegger, C. M., Woo, J. & Higgins, J. ( 2001; ). Virulence differences between two field isolates of feline immunodeficiency virus (FIV-APetaluma and FIV-CPGammar) in young adult specific pathogen free cats. Vet Immunol Immunopathol 79, 53–67.[CrossRef]
    [Google Scholar]
  32. Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M. & Ho, D. D. ( 1996; ). HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586.[CrossRef]
    [Google Scholar]
  33. Posada, D. & Crandall, K. A. ( 1998; ). modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef]
    [Google Scholar]
  34. Rey-Cuille, M. A., Berthier, J. L., Bomsel-Demontoy, M. C., Chaduc, Y., Montagnier, L., Hovanessian, A. G. & Chakrabarti, L. A. ( 1998; ). Simian immunodeficiency virus replicates to high levels in sooty mangabeys without inducing disease. J Virol 72, 3872–3886.
    [Google Scholar]
  35. Shankarappa, R., Margolick, J. B., Gange, S. J. & 9 other authors ( 1999; ). Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J Virol 73, 10489–10502.
    [Google Scholar]
  36. Swofford, D. L. ( 2002; ). PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10 Sunderland, MA: Sinauer Associates.
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81450-0
Loading
/content/journal/jgv/10.1099/vir.0.81450-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error