1887

Abstract

Infections with (HCV) pose a serious health problem worldwide. In this study, the hypothesis that adoptive transfer of dendritic cells (DCs) pulsed with HCV NS3 protein and matured with an oligodeoxynucleotide (ODN) containing CpG motifs (CpG) would initiate potent HCV-specific protective immune responses was tested. NS3 protein was efficiently transduced into DCs and treatment of DCs with CpG ODN induced phenotypic maturation and specifically increased the expression of CD40. DCs matured with CpG ODN produced higher interleukin 12 levels and a stronger allogeneic T-cell response compared with untreated DCs. Notably, there were no differences between NS3-pulsed DCs and DCs pulsed with a control protein with respect to phenotype, cytokine production or mixed lymphocyte reaction, indicating that transduction with NS3 protein did not impair DC functions. Compared with the untreated NS3-pulsed DCs, the NS3-pulsed DCs matured with CpG ODN induced stronger cellular immune responses including enhanced cytotoxicity, higher interferon- production and stronger lymphocyte proliferation. Upon challenge with a recombinant vaccinia virus expressing NS3, all mice immunized with NS3-pulsed DCs showed a significant reduction in vaccinia virus titres when compared with mock-immunized mice. However, the NS3-pulsed DCs matured with CpG ODN induced higher levels of protection compared with the untreated NS3-pulsed DCs. These data are the first to show that NS3-pulsed DCs induce specific immune responses and provide protection from viral challenge, and also demonstrate that CpG ODNs, which have a proven safety profile, would be useful in the development of DC vaccines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81423-0
2006-01-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/1/1.html?itemId=/content/journal/jgv/10.1099/vir.0.81423-0&mimeType=html&fmt=ahah

References

  1. Akira, S., Takeda, K. & Kaisho, T. ( 2001; ). Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2, 675–680.[CrossRef]
    [Google Scholar]
  2. Ardavin, C., Amigorena, S. & Reise Sousa, C. ( 2004; ). Dendritic cells: immunobiology and cancer immunotherapy. Immunity 20, 17–23.[CrossRef]
    [Google Scholar]
  3. Auffermann-Gretzinger, S., Keeffe, E. B. & Levy, S. ( 2001; ). Impaired dendritic cell maturation in patients with chronic, but not resolved, hepatitis C virus infection. Blood 97, 3171–3176.[CrossRef]
    [Google Scholar]
  4. Baca-Estrada, M. E., Snider, M., Tikoo, S. K., Harland, R., Babiuk, L. A. & van Drunen Littel-van den Hurk, S. ( 1996; ). Immunogenicity of bovine herpesvirus 1 glycoprotein D in mice: effect of antigen form on the induction of cellular and humoral immune responses. Viral Immunol 9, 11–22.[CrossRef]
    [Google Scholar]
  5. Banchereau, J., Schuler-Thurner, B., Palucka, A. K. & Schuler, G. ( 2001; ). Dendritic cells as vectors for therapy. Cell 106, 271–274.[CrossRef]
    [Google Scholar]
  6. Berberich, C., Ramirez-Pineda, J. R., Hambrecht, C., Alber, G., Skeiky, Y. A. & Moll, H. ( 2003; ). Dendritic cell (DC)-based protection against an intracellular pathogen is dependent upon DC-derived IL-12 and can be induced by molecularly defined antigens. J Immunol 170, 3171–3179.[CrossRef]
    [Google Scholar]
  7. Berger, T. G. & Schultz, E. S. ( 2003; ). Dendritic cell-based immunotherapy. Curr Top Microbiol Immunol 276, 163–197.
    [Google Scholar]
  8. Brown, K., Gao, W., Alber, S., Trichel, A., Murphey-Corb, M., Watkins, S. C., Gambotto, A. & Barratt-Boyes, S. M. ( 2003; ). Adenovirus-transduced dendritic cells injected into skin or lymph node prime potent simian immunodeficiency virus-specific T cell immunity in monkeys. J Immunol 171, 6875–6882.[CrossRef]
    [Google Scholar]
  9. Cerundolo, V., Hermans, I. F. & Salio, M. ( 2004; ). Dendritic cells: a journey from laboratory to clinic. Nat Immunol 5, 7–10.
    [Google Scholar]
  10. Chen, M., Sallberg, M., Sonnerborg, A., Weiland, O., Mattsson, L., Jin, L., Birkett, A., Peterson, D. & Milich, D. R. ( 1999; ). Limited humoral immunity in hepatitis C virus infection. Gastroenterology 116, 135–143.[CrossRef]
    [Google Scholar]
  11. Davis, H. L., Weeratna, R., Waldschmidt, T. J., Tygrett, L., Schorr, J. & Krieg, A. M. ( 1998; ). CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. J Immunol 160, 870–876.
    [Google Scholar]
  12. Diepolder, H. M., Gerlach, J. T., Zachoval, R. & 9 other authors ( 1997; ). Immunodominant CD4+ T-cell epitope within nonstructural protein 3 in acute hepatitis C virus infection. J Virol 71, 6011–6019.
    [Google Scholar]
  13. d'Ostiani, C. F., Del Sero, G., Bacci, A., Montagnoli, C., Spreca, A., Mencacci, A., Ricciardi-Castagnoli, P. & Romani, L. ( 2000; ). Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J Exp Med 191, 1661–1674.[CrossRef]
    [Google Scholar]
  14. Esser, M. T., Marchese, R. D., Kierstead, L. S., Tussey, L. G., Wang, F., Chirmule, N. & Washabaugh, M. W. ( 2003; ). Memory T cells and vaccines. Vaccine 21, 419–430.[CrossRef]
    [Google Scholar]
  15. Fried, M. W., Shiffman, M. L., Reddy, K. R. & 11 other authors ( 2002; ). Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 347, 975–982.[CrossRef]
    [Google Scholar]
  16. Grakoui, A., Wychowski, C., Lin, C., Feinstone, S. M. & Rice, C. M. ( 1993; ). Expression and identification of hepatitis C virus polyprotein cleavage products. J Virol 67, 1385–1395.
    [Google Scholar]
  17. Harandi, A. M., Eriksson, K. & Holmgren, J. ( 2003; ). A protective role of locally administered immunostimulatory CpG oligodeoxynucleotide in a mouse model of genital herpes infection. J Virol 77, 953–962.[CrossRef]
    [Google Scholar]
  18. Ioannou, X. P., Griebel, P., Hecker, R., Babiuk, L. A. & van Drunen Littel-van den Hurk, S. ( 2002; ). The immunogenicity and protective efficacy of bovine herpesvirus 1 glycoprotein D plus emulsigen are increased by formulation with CpG oligodeoxynucleotides. J Virol 76, 9002–9010.[CrossRef]
    [Google Scholar]
  19. Iwasaki, A. & Medzhitov, R. ( 2004; ). Toll-like receptor control of the adaptive immune responses. Nat Immunol 5, 987–995.[CrossRef]
    [Google Scholar]
  20. Jiao, X., Wang, R. Y., Feng, Z., Alter, H. J. & Shih, J. W. ( 2003; ). Modulation of cellular immune response against hepatitis C virus nonstructural protein 3 by cationic liposome encapsulated DNA immunization. Hepatology 37, 452–460.[CrossRef]
    [Google Scholar]
  21. Jin, L. & Peterson, D. L. ( 1995; ). Expression, isolation, and characterization of the hepatitis C virus ATPase/RNA helicase. Arch Biochem Biophys 323, 47–53.[CrossRef]
    [Google Scholar]
  22. Kaisho, T. & Akira, S. ( 2003; ). Regulation of dendritic cell function through Toll-like receptors. Curr Mol Med 3, 373–385.[CrossRef]
    [Google Scholar]
  23. Larsson, M., Babcock, E., Grakoui, A., Shoukry, N., Lauer, G., Rice, C., Walker, C. & Bhardwaj, N. ( 2004; ). Lack of phenotypic and functional impairment in dendritic cells from chimpanzees chronically infected with hepatitis C virus. J Virol 78, 6151–6161.[CrossRef]
    [Google Scholar]
  24. Lasarte, J. J., Garcia-Granero, M., Lopez, A., Casares, N., Garcia, N., Civeira, M. P., Borras-Cuesta, F. & Prieto, J. ( 1998; ). Cellular immunity to hepatitis C virus core protein and the response to interferon in patients with chronic hepatitis C. Hepatology 28, 815–822.[CrossRef]
    [Google Scholar]
  25. Lewis, P. J., van Drunen Littel-van den, H. & Babiuk, L. A. ( 1999; ). Altering the cellular location of an antigen expressed by a DNA-based vaccine modulates the immune response. J Virol 73, 10214–10223.
    [Google Scholar]
  26. Liu, Y., Chiriva-Internati, M., Grizzi, F., Salati, E., Roman, J. J., Lim, S. & Hermonat, P. L. ( 2001; ). Rapid induction of cytotoxic T-cell response against cervical cancer cells by human papillomavirus type 16 E6 antigen gene delivery into human dendritic cells by an adeno-associated virus vector. Cancer Gene Ther 8, 948–957.[CrossRef]
    [Google Scholar]
  27. Lonsdorf, A. S., Kuekrek, H., Stern, B. V., Boehm, B. O., Lehmann, P. V. & Tary-Lehmann, M. ( 2003; ). Intratumor CpG-oligodeoxynucleotide injection induces protective antitumor T cell immunity. J Immunol 171, 3941–3946.[CrossRef]
    [Google Scholar]
  28. Ludewig, B. ( 2003; ). Dendritic cell vaccination and viral infection – animal models. Curr Top Microbiol Immunol 276, 199–214.
    [Google Scholar]
  29. Lutz, M. B., Kukutsch, N., Ogilvie, A. L., Rossner, S., Koch, F., Romani, N. & Schuler, G. ( 1999; ). An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223, 77–92.[CrossRef]
    [Google Scholar]
  30. Manns, M. P., McHutchison, J. G., Gordon, S. C. & 7 other authors ( 2001; ). Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 358, 958–965.[CrossRef]
    [Google Scholar]
  31. Matsui, M., Moriya, O., Abdel-Aziz, N., Matsuura, Y., Miyamura, T. & Akatsuka, T. ( 2002; ). Induction of hepatitis C virus-specific cytotoxic T lymphocytes in mice by immunization with dendritic cells transduced with replication-defective recombinant adenovirus. Vaccine 21, 211–220.[CrossRef]
    [Google Scholar]
  32. Moll, H. & Berberich, C. ( 2001a; ). Dendritic cell-based vaccination strategies: induction of protective immunity against leishmaniasis. Immunobiology 204, 659–666.[CrossRef]
    [Google Scholar]
  33. Moll, H. & Berberich, C. ( 2001b; ). Dendritic cells as vectors for vaccination against infectious diseases. Int J Med Microbiol 291, 323–329.[CrossRef]
    [Google Scholar]
  34. Moriya, O., Matsui, M., Osorio, M., Miyazawa, H., Rice, C. M., Feinstone, S. M., Leppla, S. H., Keith, J. M. & Akatsuka, T. ( 2001; ). Induction of hepatitis C virus-specific cytotoxic T lymphocytes in mice by immunization with dendritic cells treated with an anthrax toxin fusion protein. Vaccine 20, 789–796.[CrossRef]
    [Google Scholar]
  35. Mozdzanowska, K., Maiese, K. & Gerhard, W. ( 2000; ). Th cell-deficient mice control influenza virus infection more effectively than Th- and B cell-deficient mice: evidence for a Th-independent contribution by B cells to virus clearance. J Immunol 164, 2635–2643.[CrossRef]
    [Google Scholar]
  36. Murata, K., Lechmann, M., Qiao, M., Gunji, T., Alter, H. J. & Liang, T. J. ( 2003; ). Immunization with hepatitis C virus-like particles protects mice from recombinant hepatitis C virus-vaccinia infection. Proc Natl Acad Sci U S A 100, 6753–6758.[CrossRef]
    [Google Scholar]
  37. Neumann-Haefelin, C., Blum, H. E., Chisari, F. V. & Thimme, R. ( 2005; ). T cell response in hepatitis C virus infection. J Clin Virol 32, 75–85.[CrossRef]
    [Google Scholar]
  38. Nieda, M., Tomiyama, M. & Egawa, K. ( 2003; ). Ex vivo enhancement of antigen-presenting function of dendritic cells and its application for DC-based immunotherapy. Hum Cell 16, 199–204.[CrossRef]
    [Google Scholar]
  39. Nonn, M., Schinz, M., Zumbach, K., Pawlita, M., Schneider, A., Durst, M. & Kaufmann, A. M. ( 2003; ). Dendritic cell-based tumor vaccine for cervical cancer I: in vitro stimulation with recombinant protein-pulsed dendritic cells induces specific T cells to HPV16 E7 or HPV18 E7. J Cancer Res Clin Oncol 129, 511–520.[CrossRef]
    [Google Scholar]
  40. O'Sullivan, B. & Thomas, R. ( 2003; ). CD40 and dendritic cell function. Crit Rev Immunol 23, 83–107.[CrossRef]
    [Google Scholar]
  41. Oumouna, M., Mapletoft, J. W., Karvonen, B. C., Babiuk, L. A. & van Drunen Littel-van den Hurk, S. ( 2005; ). Formulation with CpG oligodeoxynucleotides prevents induction of pulmonary immunopathology following priming with formalin-inactivated or commercial killed bovine respiratory syncytial virus vaccine. J Virol 79, 2024–2032.[CrossRef]
    [Google Scholar]
  42. Pancholi, P., Perkus, M., Tricoche, N., Liu, Q. & Prince, A. M. ( 2003; ). DNA immunization with hepatitis C virus (HCV) polycistronic genes or immunization by HCV DNA priming-recombinant canarypox virus boosting induces immune responses and protection from recombinant HCV-vaccinia virus infection in HLA-A2.1-transgenic mice. J Virol 77, 382–390.[CrossRef]
    [Google Scholar]
  43. Pawlotsky, J. M. ( 2003; ). Hepatitis C virus genetic variability: pathogenic and clinical implications. Clin Liver Dis 7, 45–66.[CrossRef]
    [Google Scholar]
  44. Pouniotis, D. S., Proudfoot, O., Bogdanoska, V., Apostolopoulos, V., Fifis, T. & Plebanski, M. ( 2004; ). Dendritic cells induce immunity and long-lasting protection against blood-stage malaria despite an in vitro parasite-induced maturation defect. Infect Immun 72, 5331–5339.[CrossRef]
    [Google Scholar]
  45. Pulendran, B. ( 2004; ). Modulating vaccine responses with dendritic cells and Toll-like receptors. Immunol Rev 199, 227–250.[CrossRef]
    [Google Scholar]
  46. Ramirez-Pineda, J. R., Frohlich, A., Berberich, C. & Moll, H. ( 2004; ). Dendritic cells (DC) activated by CpG DNA ex vivo are potent inducers of host resistance to an intracellular pathogen that is independent of IL-12 derived from the immunizing DC. J Immunol 172, 6281–6289.[CrossRef]
    [Google Scholar]
  47. Rankin, R., Pontarollo, R., Ioannou, X., Krieg, A. M., Hecker, R., Babiuk, L. A. & van Drunen Littel-van den Hurk, S. ( 2001; ). CpG motif identification for veterinary and laboratory species demonstrates that sequence recognition is highly conserved. Antisense Nucleic Acid Drug Dev 11, 333–340.[CrossRef]
    [Google Scholar]
  48. Rao, M., Matyas, G. R., Vancott, T. C., Birx, D. L. & Alving, C. R. ( 2004; ). Immunostimulatory CpG motifs induce CTL responses to HIV type I oligomeric gp140 envelope protein. Immunol Cell Biol 82, 523–530.[CrossRef]
    [Google Scholar]
  49. Rehermann, B. & Chisari, F. V. ( 2000; ). Cell mediated immune response to the hepatitis C virus. Curr Top Microbiol Immunol 242, 299–325.
    [Google Scholar]
  50. Rodriguez, A., Regnault, A., Kleijmeer, M., Ricciardi-Castagnoli, P. & Amigorena, S. ( 1999; ). Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat Cell Biol 1, 362–368.[CrossRef]
    [Google Scholar]
  51. Sallusto, F., Cella, M., Danieli, C. & Lanzavecchia, A. ( 1995; ). Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182, 389–400.[CrossRef]
    [Google Scholar]
  52. Samani, T. D., Jolles, B. & Laigle, A. ( 2001; ). Best minimally modified antisense oligonucleotides according to cell nuclease activity. Antisense Nucleic Acid Drug Dev 11, 129–136.[CrossRef]
    [Google Scholar]
  53. Santin, A. D., Hermonat, P. L., Ravaggi, A., Chiriva-Internati, M., Zhan, D., Pecorelli, S., Parham, G. P. & Cannon, M. J. ( 1999; ). Induction of human papillomavirus-specific CD4+ and CD8+ lymphocytes by E7-pulsed autologous dendritic cells in patients with human papillomavirus type 16- and 18-positive cervical cancer. J Virol 73, 5402–5410.
    [Google Scholar]
  54. Sarobe, P., Lasarte, J. J., Casares, N., Lopez-Diaz de Cerio, A., Baixeras, E., Labarga, P., Garcia, N., Borras-Cuesta, F. & Prieto, J. ( 2002; ). Abnormal priming of CD4+ T cells by dendritic cells expressing hepatitis C virus core and E1 proteins. J Virol 76, 5062–5070.[CrossRef]
    [Google Scholar]
  55. Sarobe, P., Lasarte, J. J., Zabaleta, A., Arribillaga, L., Arina, A., Melero, I., Borras-Cuesta, F. & Prieto, J. ( 2003; ). Hepatitis C virus structural proteins impair dendritic cell maturation and inhibit in vivo induction of cellular immune responses. J Virol 77, 10862–10871.[CrossRef]
    [Google Scholar]
  56. Simmonds, P. ( 1999; ). Viral heterogeneity of the hepatitis C virus. J Hepatol 31, S54–S60.[CrossRef]
    [Google Scholar]
  57. Takaki, A., Wiese, M., Maertens, G., Depla, E., Seifert, U., Liebetrau, A., Miller, J. L., Manns, M. P. & Rehermann, B. ( 2000; ). Cellular immune responses persist and humoral responses decrease two decades after recovery from a single-source outbreak of hepatitis C. Nat Med 6, 578–582.[CrossRef]
    [Google Scholar]
  58. van den Broeke, L. T., Daschbach, E., Thomas, E. K., Andringa, G. & Berzofsky, J. A. ( 2003; ). Dendritic cell-induced activation of adaptive and innate antitumor immunity. J Immunol 171, 5842–5852.[CrossRef]
    [Google Scholar]
  59. Walsh, S. R., Bhardwaj, N. & Gandhil, R. T. ( 2003; ). Dendritic cells and the promise of therapeutic vaccines for human immunodeficiency virus (HIV)-1. Curr HIV Res 1, 205–216.[CrossRef]
    [Google Scholar]
  60. Weeratna, R. D., McCluskie, M. J., Xu, Y. & Davis, H. L. ( 2000; ). CpG DNA induces stronger immune responses with less toxicity than other adjuvants. Vaccine 18, 1755–1762.[CrossRef]
    [Google Scholar]
  61. WHO ( 1999; ). Global surveillance and control of hepatitis C. Report of a WHO Consultation organized in collaboration with the Viral Hepatitis Prevention Board, Antwerp, Belgium. J Viral Hepat 6, 35–47.[CrossRef]
    [Google Scholar]
  62. Yu, H., Babiuk, L. A. & van Drunen Littel-van den Hurk, S. ( 2004; ). Priming with CpG-enriched plasmid and boosting with protein formulated with CpG oligodeoxynucleotides and Quil A induces strong cellular and humoral immune responses to hepatitis C virus NS3. J Gen Virol 85, 1533–1543.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81423-0
Loading
/content/journal/jgv/10.1099/vir.0.81423-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error