1887

Abstract

is a circumtropical, mosquito-borne flavivirus that infects 50–100 million people each year and is expanding in both range and prevalence. Of the four co-circulating viral serotypes (DENV-1 to DENV-4) that cause mild to severe febrile disease, DENV-2 has been implicated in the onset of dengue haemorrhagic fever (DHF) in the Americas in the early 1980s. To identify patterns of genetic change since DENV-2's reintroduction into the region, molecular evolution in DENV-2 from Puerto Rico (PR) and surrounding countries was examined over a 20 year period of fluctuating disease incidence. Structural genes (over 20 % of the viral genome), which affect viral packaging, host-cell entry and immune response, were sequenced for 91 DENV-2 isolates derived from both low- and high-prevalence years. Phylogenetic analyses indicated that DENV-2 outbreaks in PR have been caused by viruses assigned to subtype IIIb, originally from Asia. Variation amongst DENV-2 viruses in PR has since largely arisen , except for a lineage-replacement event in 1994 that appears to have non-PR New World origins. Although most structural genes have remained relatively conserved since the 1980s, strong evidence was found for positive selection acting on a number of amino acid sites in the envelope gene, which have also been important in defining phylogenetic structure. Some of these changes are exhibited by the multiple lineages present in 1994, during the largest Puerto Rican outbreak of dengue, suggesting that they may have altered disease dynamics, although their functional significance will require further investigation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81309-0
2006-04-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/4/885.html?itemId=/content/journal/jgv/10.1099/vir.0.81309-0&mimeType=html&fmt=ahah

References

  1. Bennett, S. N., Holmes, E. C., Chirivella, M., Rodriguez, D. M., Beltran, M., Vorndam, V., Gubler, D. J. & McMillan, W. O. ( 2003; ). Selection-driven evolution of emergent dengue virus. Mol Biol Evol 20, 1650–1658.[CrossRef]
    [Google Scholar]
  2. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. ( 2004; ). GenBank: update. Nucleic Acids Res 32, D23–D26.[CrossRef]
    [Google Scholar]
  3. Cologna, R. & Rico-Hesse, R. ( 2003; ). American genotype structures decrease dengue virus output from human monocytes and dendritic cells. J Virol 77, 3929–3938.[CrossRef]
    [Google Scholar]
  4. Deubel, V., Kinney, R. M. & Trent, D. W. ( 1986; ). Nucleotide sequence and deduced amino acid sequence of the structural proteins of dengue type 2 virus, Jamaica genotype. Virology 155, 365–377.[CrossRef]
    [Google Scholar]
  5. Deubel, V., Kinney, R. M. & Trent, D. W. ( 1988; ). Nucleotide sequence and deduced amino acid sequence of the nonstructural proteins of dengue type 2 virus, Jamaica genotype: comparative analysis of the full-length genome. Virology 165, 234–244.[CrossRef]
    [Google Scholar]
  6. Dietz, V., Gubler, D. J., Ortiz, S., Kuno, G., Casta-Velez, A., Sather, G. E., Gomez, I. & Vergne, E. ( 1996; ). The 1986 dengue and dengue hemorrhagic fever epidemic in Puerto Rico: epidemiologic and clinical observations. P R Health Sci J 15, 201–210.
    [Google Scholar]
  7. Foster, J. E., Bennett, S. N., Vaughan, H., Vorndam, V., McMillan, W. O. & Carrington, C. V. F. ( 2003; ). Molecular evolution and phylogeny of dengue type 4 virus in the Caribbean. Virology 306, 126–134.[CrossRef]
    [Google Scholar]
  8. Foster, J. E., Bennett, S. N., Carrington, C. V. F., Vaughan, H. & McMillan, W. O. ( 2004; ). Phylogeography and molecular evolution of dengue type 2 virus in the Caribbean basin, 1981–2000. Virology 324, 48–59.[CrossRef]
    [Google Scholar]
  9. Gubler, D. J. ( 1993; ). Dengue and dengue hemorrhagic fever in the Americas. In Dengue Hemorrhagic Fever, WHO regional publication SEARO no. 22, pp. 9–22. Edited by P. Thoncharoen. New Delhi, India: WHO.
  10. Gubler, D. J. ( 1997; ). Dengue and dengue hemorrhagic fever: its history and resurgence as a global public health problem. In Dengue and Dengue Hemorrhagic Fever, pp. 1–22. Edited by D. J. Gubler & G. Kuno. London: CAB International.
  11. Gubler, D. J. ( 1998a; ). Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11, 480–496.
    [Google Scholar]
  12. Gubler, D. J. ( 1998b; ). The global pandemic of dengue/dengue haemorrhagic fever: current status and prospects for the future. Ann Acad Med Singapore 27, 227–234.
    [Google Scholar]
  13. Gubler, D. J. ( 2002; ). Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10, 100–103.[CrossRef]
    [Google Scholar]
  14. Gubler, D. J., Reed, D., Rosen, L. & Hitchcock, J. R., Jr ( 1978; ). Epidemiologic, clinical, and virologic observations on dengue in the Kingdom of Tonga. Am J Trop Med Hyg 27, 581–589.
    [Google Scholar]
  15. Guzman, M. G., Kouri, G., Morier, L., Soler, M. & Fernandez, A. ( 1984; ). A study of fatal hemorrhagic dengue cases in Cuba, 1981. Bull Pan Am Health Organ 18, 213–220.
    [Google Scholar]
  16. Guzman, M. G., Deubel, V., Pelegrino, J. L., Rosario, D., Marrero, M., Sariol, C. & Kouri, G. ( 1995; ). Partial nucleotide and amino acid sequences of the envelope and the envelope/nonstructural protein-1 gene junction of four dengue-2 virus strains isolated during the 1981 Cuban epidemic. Am J Trop Med Hyg 52, 241–246.
    [Google Scholar]
  17. Halstead, S. B. ( 1988; ). Pathogenesis of dengue: challenges to molecular biology. Science 239, 476–481.[CrossRef]
    [Google Scholar]
  18. Halstead, S. B., Streit, T. G., Lafontant, J. G., Putvatana, R., Russel, K., Sun, W., Kanesa-Thasan, N., Hayes, C. G. & Watts, D. M. ( 2001; ). Haiti: absence of dengue hemorrhagic fever despite hyperendemic dengue virus transmission. Am J Trop Med Hyg 65, 180–183.
    [Google Scholar]
  19. Hasegawa, M., Kishino, H. & Yano, T. ( 1985; ). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22, 160–174.[CrossRef]
    [Google Scholar]
  20. Huelsenbeck, J. P., Ronquist, F., Nielsen, R. & Bollback, J. P. ( 2001; ). Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310–2314.[CrossRef]
    [Google Scholar]
  21. Huson, D. H. ( 1998; ). SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14, 68–73.[CrossRef]
    [Google Scholar]
  22. Kinney, R. M., Butrapet, S., Chang, G.-J. J., Tsuchiya, K. R., Roehrig, J. T., Bhamarapravati, N. & Gubler, D. J. ( 1997; ). Construction of infectious cDNA clones for dengue 2 virus: strain 16681 and its attenuated vaccine derivate, strain PDK-53. Virology 230, 300–308.[CrossRef]
    [Google Scholar]
  23. Kliks, S. C., Nisalak, A., Brandt, W. E., Wahl, L. & Burke, D. S. ( 1989; ). Antibody-dependent enhancement of dengue virus growth in human monocytes as a risk factor for dengue hemorrhagic fever. Am J Trop Med Hyg 40, 444–451.
    [Google Scholar]
  24. Kouri, G. P., Guzman, M. G., Bravo, J. R. & Triana, C. ( 1989; ). Dengue haemorrhagic fever/dengue shock syndrome: lessons from the Cuban epidemic, 1981. Bull W H O 67, 375–380.
    [Google Scholar]
  25. Kuno, G. ( 1997; ). Factors influencing the transmission of dengue viruses. In Dengue and Dengue Hemorrhagic Fever, pp. 61–88. Edited by D. J. Gubler & G. Kuno. London: CAB International.
  26. Leitmeyer, K. C., Vaughn, D. W., Watts, D. M., Salas, R., Villalobos de Chacon, I., Ramos, C. & Rico-Hesse, R. ( 1999; ). Dengue virus structural differences that correlate with pathogenesis. J Virol 73, 4738–4747.
    [Google Scholar]
  27. Lewis, J. A., Chang, G.-J., Lanciotti, R. S., Kinney, R. M., Mayer, L. W. & Trent, D. W. ( 1993; ). Phylogenetic relationships of dengue-2 viruses. Virology 197, 216–224.[CrossRef]
    [Google Scholar]
  28. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. ( 2004; ). Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319.[CrossRef]
    [Google Scholar]
  29. Rambaut, A. ( 2000; ). Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 16, 395–399.[CrossRef]
    [Google Scholar]
  30. Rico-Hesse, R. ( 1990; ). Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology 174, 479–493.[CrossRef]
    [Google Scholar]
  31. Rico-Hesse, R., Harrison, L. M., Salas, R. A. & 7 other authors ( 1997; ). Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology 230, 244–251.[CrossRef]
    [Google Scholar]
  32. Rico-Hesse, R., Harrison, L. M., Nisalak, A., Vaughn, D. W., Kalayanarooj, S., Green, S., Rothman, A. L. & Ennis, F. A. ( 1998; ). Molecular evolution of dengue type 2 virus in Thailand. Am J Trop Med Hyg 58, 96–101.
    [Google Scholar]
  33. Rigau-Pérez, J. G., Vorndam, A. V. & Clark, G. G. ( 2001; ). The dengue and dengue hemorrhagic fever epidemic in Puerto Rico, 1994–1995. Am J Trop Med Hyg 64, 67–74.
    [Google Scholar]
  34. Roehrig, J. T. ( 1997; ). Immunochemistry of dengue viruses. In Dengue and Dengue Hemorrhagic Fever, pp. 199–219. Edited by D. J. Gubler & G. Kuno. London: CAB International.
  35. Ronquist, F. & Huelsenbeck, J. P. ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.[CrossRef]
    [Google Scholar]
  36. Sánchez, I. J. & Ruiz, B. H. ( 1996; ). A single nucleotide change in the E protein gene of dengue virus 2 Mexican strain affects neurovirulence in mice. J Gen Virol 77, 2541–2545.[CrossRef]
    [Google Scholar]
  37. Sariol, C. A., Pelegrino, J. L., Martinez, A., Arteaga, E., Kouri, G. & Guzman, M. G. ( 1999; ). Detection and genetic relationship of dengue virus sequences in seventeen-year-old paraffin-embedded samples from Cuba. Am J Trop Med Hyg 61, 994–1000.
    [Google Scholar]
  38. Swofford, D. L. ( 2002; ). paup*: Phylogenetic analysis using parsimony, version 4.0b. Sunderland, MA: Sinauer Associates.
  39. Thein, S., Aung, M. M., Shwe, T. N., Aye, M., Aung, Z., Aye, K., Aye, K. M. & Aaskov, J. ( 1997; ). Risk factors in dengue shock syndrome. Am J Trop Med Hyg 56, 566–572.
    [Google Scholar]
  40. Trent, D. W., Grant, J. A., Monath, T. P., Manske, C. L., Corina, M. & Fox, G. E. ( 1989; ). Genetic variation and microevolution of dengue 2 virus in Southeast Asia. Virology 172, 523–535.[CrossRef]
    [Google Scholar]
  41. Twiddy, S. S., Farrar, J. F., Chau, N. V., Wills, B., Gould, E. A., Gritsun, T., Lloyd, G. & Holmes, E. C. ( 2002a; ). Phylogenetic relationships and differential selection pressures among genotypes of dengue-2 virus. Virology 298, 63–72.[CrossRef]
    [Google Scholar]
  42. Twiddy, S. S., Woelk, C. H. & Holmes, E. C. ( 2002b; ). Phylogenetic evidence for adaptive evolution of dengue viruses in nature. J Gen Virol 83, 1679–1689.
    [Google Scholar]
  43. Vorndam, V., Nogueira, R. M. R. & Trent, D. W. ( 1994; ). Restriction enzyme analysis of American region dengue viruses. Arch Virol 136, 191–196.[CrossRef]
    [Google Scholar]
  44. Wang, E., Ni, H., Xu, R., Barrett, A. D. T., Watowich, S. J., Gubler, D. J. & Weaver, S. C. ( 2000; ). Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. J Virol 74, 3227–3234.[CrossRef]
    [Google Scholar]
  45. Watts, D. M., Porter, K. R., Putvatana, P., Vasquez, B., Calampa, C., Hayes, C. G. & Halstead, S. B. ( 1999; ). Failure of secondary infection with American genotype dengue 2 to cause dengue haemorrhagic fever. Lancet 354, 1431–1434.[CrossRef]
    [Google Scholar]
  46. Weaver, S. C., Brault, A. C., Kang, W. & Holland, J. J. ( 1999; ). Genetic and fitness changes accompanying adaptation of an arbovirus to vertebrate and invertebrate cells. J Virol 73, 4316–4326.
    [Google Scholar]
  47. WHO ( 1999; ). Strengthening Implementation of the Global Strategy for Dengue Fever/ Dengue Haemorrhagic Fever Prevention and Control. Report of the Informal Consultation, 18–20 October 1999, WHO HQ, Geneva [WHO Report WHO/CDS/(DEN)/IC/2000.1]. http://www.who.int/csr/resources/publications/dengue/whocdsdenic20001.pdf
  48. Worobey, M. ( 2001; ). A novel approach to detecting and measuring recombination: new insights into evolution in viruses, bacteria, and mitochondria. Mol Biol Evol 18, 1425–1434.[CrossRef]
    [Google Scholar]
  49. Yang, Z. ( 1997; ). paml: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13, 555–556.
    [Google Scholar]
  50. Yang, Z., Nielsen, R., Goldman, N. & Krabbe Pedersen, A.-M. ( 2000; ). Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155, 431–449.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81309-0
Loading
/content/journal/jgv/10.1099/vir.0.81309-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 885 – 893

List of isolates used, time and place of origin and GenBank accession no. [ PDF] (99 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error