1887

Abstract

Wild-type strains of mice do not express CD46, a high-affinity receptor for human group B adenoviruses including type 35. Therefore, studies performed to date in mice using replication-incompetent Ad35 (rAd35) vaccine carriers may underestimate potency or result in altered vector distribution. Here, it is reported that CD46 transgenic mice (MYII-strain) express CD46 in all major organs and that it functions as a receptor for rAd35 vectors. Similar to monkeys and humans, MYII mice highly express CD46 in their lungs and kidneys and demonstrate low expression in muscle. Upon intravenous administration, rAd35 vector genomes as well as expression are detected in lungs of MYII mice, in contrast to wild-type littermates. Expression was predominantly detected in lung epithelial cells. Upon intramuscular administration, the initial level of luciferase expression is higher in MYII mice as compared with wild-type littermates, in spite of the fact that CD46 expression is low in muscle of MYII mice. The higher level of expression in muscle of MYII mice results in prolonged gene expression as assessed by CCD camera imaging for luciferase activity. Finally, a significant dose-sparing effect in MYII mice as compared with wild-type littermates on anti-SIVgag CD8 T-cell induction following intramuscular vaccination with an rA35.SIVgag vaccine was observed. This dose-sparing effect was also observed when reinfusing dendritic cells derived from MYII mice after exposure to rAd35.SIVgag vaccine as compared with rAd35.SIVgag exposed dendritic cells from wild-type littermates. It was concluded that MYII mice represent an interesting preclinical model to evaluate potency and safety of rAd35 vectors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81293-0
2006-02-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/2/255.html?itemId=/content/journal/jgv/10.1099/vir.0.81293-0&mimeType=html&fmt=ahah

References

  1. Barouch, D. H., Pau, M. G., Custers, J. H. & 15 other authors ( 2004; ). Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. J Immunol 172, 6290–6297.[CrossRef]
    [Google Scholar]
  2. Bergelson, J. M., Cunningham, J. A., Droguett, G., Kurt-Jones, E. A., Krithivas, A., Hong, J. S., Horwitz, M. S., Crowell, R. L. & Finberg, R. W. ( 1997; ). Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320–1323.[CrossRef]
    [Google Scholar]
  3. Cao, B., Pruchnic, R., Ikezawa, M., Xiao, X., Li, J., Wickham, T. J., Kovesdi, I., Rudert, W. A. & Huard, J. ( 2001; ). The role of receptors in the maturation-dependent adenoviral transduction of myofibers. Gene Ther 8, 627–637.[CrossRef]
    [Google Scholar]
  4. de Bruijn, J. D., van den Brink, I., Mendes, S., Dekker, R., Bovell, Y. P. & van Blitterswijk, C. A. ( 1999; ). Bone induction by implants coated with cultured osteogenic bone marrow cells. Adv Dent Res 13, 74–81.[CrossRef]
    [Google Scholar]
  5. Dorig, R. E., Marcil, A., Chopra, A. & Richardson, C. D. ( 1993; ). The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305.[CrossRef]
    [Google Scholar]
  6. Fechner, H., Haack, A., Wang, H. & 9 other authors ( 1999; ). Expression of coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Ther 6, 1520–1535.[CrossRef]
    [Google Scholar]
  7. Gaggar, A., Shayakhmetov, D. M. & Lieber, A. ( 2003; ). CD46 is a cellular receptor for group B adenoviruses. Nat Med 9, 1408–1412.[CrossRef]
    [Google Scholar]
  8. Goossens, P. H., Havenga, M. J., Pieterman, E., Lemckert, A. A., Breedveld, F. C., Bout, A. & Huizinga, T. W. ( 2001; ). Infection efficiency of type 5 adenoviral vectors in synovial tissue can be enhanced with a type 16 fiber. Arthritis Rheum 44, 570–577.[CrossRef]
    [Google Scholar]
  9. Havenga, M. J., Lemckert, A. A., Grimbergen, J. M., Vogels, R., Huisman, L. G., Valerio, D., Bout, A. & Quax, P. H. ( 2001; ). Improved adenovirus vectors for infection of cardiovascular tissues. J Virol 75, 3335–3342.[CrossRef]
    [Google Scholar]
  10. Havenga, M. J., Lemckert, A. A., Ophorst, O. J. & 13 other authors ( 2002; ). Exploiting the natural diversity in adenovirus tropism for therapy and prevention of disease. J Virol 76, 4612–4620.[CrossRef]
    [Google Scholar]
  11. Heemskerk, B., Veltrop-Duits, L. A., van Vreeswijk, T., ten Dam, M. M., Heidt, S., Toes, R. E., van Tol, M. J. & Schilham, M. W. ( 2003; ). Extensive cross-reactivity of CD4+ adenovirus-specific T cells: implications for immunotherapy and gene therapy. J Virol 77, 6562–6566.[CrossRef]
    [Google Scholar]
  12. Holterman, L., Vogels, R., van der Vlugt, R. & 15 other authors ( 2004; ). Novel replication-incompetent vector derived from adenovirus type 11 (Ad11) for vaccination and gene therapy: low seroprevalence and non-cross-reactivity with Ad5. J Virol 78, 13207–13215.[CrossRef]
    [Google Scholar]
  13. Horvat, B., Rivailler, P., Varior-Krishnan, G., Cardoso, A., Gerlier, D. & Rabourdin-Combe, C. ( 1996; ). Transgenic mice expressing human measles virus (MV) receptor CD46 provide cells exhibiting different permissivities to MV infections. J Virol 70, 6673–6681.
    [Google Scholar]
  14. Hutchin, M. E., Pickles, R. J. & Yarbrough, W. G. ( 2000; ). Efficiency of adenovirus-mediated gene transfer to oropharyngeal epithelial cells correlates with cellular differentiation and human coxsackie and adenovirus receptor expression. Hum Gene Ther 11, 2365–2375.[CrossRef]
    [Google Scholar]
  15. Kallstrom, H., Liszewski, M. K., Atkinson, J. P. & Jonsson, A. B. ( 1997; ). Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisseria. Mol Microbiol 25, 639–647.[CrossRef]
    [Google Scholar]
  16. Kemper, C., Leung, M., Stephensen, C. B., Pinkert, C. A., Liszewski, M. K., Cattaneo, R. & Atkinson, J. P. ( 2001; ). Membrane cofactor protein (MCP; CD46) expression in transgenic mice. Clin Exp Immunol 124, 180–189.[CrossRef]
    [Google Scholar]
  17. Klein, D., Janda, P., Steinborn, R., Muller, M., Salmons, B. & Gunzburg, W. H. ( 1999; ). Proviral load determination of different feline immunodeficiency virus isolates using real-time polymerase chain reaction: influence of mismatches on quantification. Electrophoresis 20, 291–299.[CrossRef]
    [Google Scholar]
  18. Klein, D., Bugl, B., Gunzburg, W. H. & Salmons, B. ( 2000; ). Accurate estimation of transduction efficiency necessitates a multiplex real-time PCR. Gene Ther 7, 458–463.[CrossRef]
    [Google Scholar]
  19. Knaan-Shanzer, S., Van Der Velde, I., Havenga, M. J., Lemckert, A. A., De Vries, A. A. & Valerio, D. ( 2001; ). Highly efficient targeted transduction of undifferentiated human hematopoietic cells by adenoviral vectors displaying fiber knobs of subgroup B. Hum Gene Ther 12, 1989–2005.[CrossRef]
    [Google Scholar]
  20. Kostense, S., Koudstaal, W., Sprangers, M. & 8 other authors ( 2004; ). Adenovirus types 5 and 35 seroprevalence in AIDS risk groups supports type 35 as a vaccine vector. AIDS 18, 1213–1216.[CrossRef]
    [Google Scholar]
  21. Kremer, E. J., Boutin, S., Chillon, M. & Danos, O. ( 2000; ). Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer. J Virol 74, 505–512.[CrossRef]
    [Google Scholar]
  22. Lamme, E. N., van Leeuwen, R. T., Jonker, A., van Marle, J. & Middelkoop, E. ( 1998; ). Living skin substitutes: survival and function of fibroblasts seeded in a dermal substitute in experimental wounds. J Invest Dermatol 111, 989–995.[CrossRef]
    [Google Scholar]
  23. Lamme, E. N., Van Leeuwen, R. T., Brandsma, K., Van Marle, J. & Middelkoop, E. ( 2000; ). Higher numbers of autologous fibroblasts in an artificial dermal substitute improve tissue regeneration and modulate scar tissue formation. J Pathol 190, 595–603.[CrossRef]
    [Google Scholar]
  24. Li, D., Duan, L., Freimuth, P. & O'Malley, B. W., Jr ( 1999; ). Variability of adenovirus receptor density influences gene transfer efficiency and therapeutic response in head and neck cancer. Clin Cancer Res 5, 4175–4181.
    [Google Scholar]
  25. Manchester, M., Liszewski, M. K., Atkinson, J. P. & Oldstone, M. B. ( 1994; ). Multiple isoforms of CD46 (membrane cofactor protein) serve as receptors for measles virus. Proc Natl Acad Sci U S A 91, 2161–2165.[CrossRef]
    [Google Scholar]
  26. Mei, Y. F., Lindman, K. & Wadell, G. ( 1998; ). Two closely related adenovirus genome types with kidney or respiratory tract tropism differ in their binding to epithelial cells of various origins. Virology 240, 254–266.[CrossRef]
    [Google Scholar]
  27. Mei, Y. F., Lindman, K. & Wadell, G. ( 2002; ). Human adenoviruses of subgenera B, C, and E with various tropisms differ in both binding to and replication in the epithelial A549 and 293 cells. Virology 295, 30–43.[CrossRef]
    [Google Scholar]
  28. Mercier, S., Verhaagh, S., Goudsmit, J., Lemckert, A., Monteil, M., Havenga, M. & Eloit, M. ( 2004; ). Adenovirus fibre exchange alters cell tropism in vitro but not transgene-specific T CD8+ immune responses in vivo. J Gen Virol 85, 1227–1236.[CrossRef]
    [Google Scholar]
  29. Miyagawa, S., Ikawa, M., Kominami, K., Tanaka, H., Mikata, S., Matsuda, H., Seya, T., Shirakura, R. & Okabe, M. ( 1997; ). The regulation of membrane cofactor protein (CD46) expression in transgenic mice: the importance of the first 125 BP of the 3′ untranslated region. Transplant Proc 29, 941–942.[CrossRef]
    [Google Scholar]
  30. Moutsatsos, I. K., Turgeman, G., Zhou, S. & 9 other authors ( 2001; ). Exogenously regulated stem cell-mediated gene therapy for bone regeneration. Mol Ther 3, 449–461.[CrossRef]
    [Google Scholar]
  31. Nalbantoglu, J., Pari, G., Karpati, G. & Holland, P. C. ( 1999; ). Expression of the primary coxsackie and adenovirus receptor is downregulated during skeletal muscle maturation and limits the efficacy of adenovirus-mediated gene delivery to muscle cells. Hum Gene Ther 10, 1009–1019.[CrossRef]
    [Google Scholar]
  32. Naniche, D., Varior-Krishnan, G., Cervoni, F., Wild, T. F., Rossi, B., Rabourdin-Combe, C. & Gerlier, D. ( 1993; ). Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67, 6025–6032.
    [Google Scholar]
  33. Ni, S., Bernt, K., Gaggar, A., Li, Z.-Y., Kiem, H. P. & Lieber, A. ( 2005; ). Evaluation of biodistribution and safety of adenovirus vectors containing group B fibers after intravenous injection into baboons. Hum Gene Ther 16, 664–677.[CrossRef]
    [Google Scholar]
  34. Nwanegbo, E., Vardas, E., Gao, W., Whittle, H., Sun, H., Rowe, D., Robbins, P. D. & Gambotto, A. ( 2004; ). Prevalence of neutralizing antibodies to adenoviral serotypes 5 and 35 in the adult populations of The Gambia, South Africa, and the United States. Clin Diagn Lab Immunol 11, 351–357.
    [Google Scholar]
  35. Okada, N., Liszewski, M. K., Atkinson, J. P. & Caparon, M. ( 1995; ). Membrane cofactor protein (CD46) is a keratinocyte receptor for the M protein of the group A streptococcus. Proc Natl Acad Sci U S A 92, 2489–2493.[CrossRef]
    [Google Scholar]
  36. Oldstone, M. B., Lewicki, H., Thomas, D. & 7 other authors ( 1999; ). Measles virus infection in a transgenic model: virus-induced immunosuppression and central nervous system disease. Cell 98, 629–640.[CrossRef]
    [Google Scholar]
  37. Ophorst, O. J., Kostense, S., Goudsmit, J. & 9 other authors ( 2004; ). An adenoviral type 5 vector carrying a type 35 fiber as a vaccine vehicle: DC targeting, cross neutralization, and immunogenicity. Vaccine 22, 3035–3044.[CrossRef]
    [Google Scholar]
  38. Orlicky, D. J., DeGregori, J. & Schaack, J. ( 2001; ). Construction of stable coxsackievirus and adenovirus receptor-expressing 3T3-L1 cells. J Lipid Res 42, 910–915.
    [Google Scholar]
  39. Rall, G. F., Manchester, M., Daniels, L. R., Callahan, E. M., Belman, A. R. & Oldstone, M. B. ( 1997; ). A transgenic mouse model for measles virus infection of the brain. Proc Natl Acad Sci U S A 94, 4659–4663.[CrossRef]
    [Google Scholar]
  40. Rea, D., Havenga, M. J., van Den Assem, M. & 6 other authors ( 2001a; ). Highly efficient transduction of human monocyte-derived dendritic cells with subgroup B fiber-modified adenovirus vectors enhances transgene-encoded antigen presentation to cytotoxic T cells. J Immunol 166, 5236–5244.[CrossRef]
    [Google Scholar]
  41. Rea, D., Johnson, M. E., Havenga, M. J., Melief, C. J. & Offringa, R. ( 2001b; ). Strategies for improved antigen delivery into dendritic cells. Trends Mol Med 7, 91–94.[CrossRef]
    [Google Scholar]
  42. Riesle, J., Hollander, A. P., Langer, R., Freed, L. E. & Vunjak-Novakovic, G. ( 1998; ). Collagen in tissue-engineered cartilage: types, structure, and crosslinks. J Cell Biochem 71, 313–327.[CrossRef]
    [Google Scholar]
  43. Santoro, F., Kennedy, P. E., Locatelli, G., Malnati, M. S., Berger, E. A. & Lusso, P. ( 1999; ). CD46 is a cellular receptor for human herpesvirus 6. Cell 99, 817–827.[CrossRef]
    [Google Scholar]
  44. Segerman, A., Atkinson, J. P., Marttila, M., Dennerquist, V., Wadell, G. & Arnberg, N. ( 2003; ). Adenovirus type 11 uses CD46 as a cellular receptor. J Virol 77, 9183–9191.[CrossRef]
    [Google Scholar]
  45. Seshidhar Reddy, P., Ganesh, S., Limbach, M. P., Brann, T., Pinkstaff, A., Kaloss, M., Kaleko, M. & Connelly, S. ( 2003; ). Development of adenovirus serotype 35 as a gene transfer vector. Virology 311, 384–393.[CrossRef]
    [Google Scholar]
  46. Sirena, D., Lilienfeld, B., Eisenhut, M. & 8 other authors ( 2004; ). The human membrane cofactor CD46 is a receptor for species B adenovirus serotype 3. J Virol 78, 4454–4462.[CrossRef]
    [Google Scholar]
  47. Sprangers, M. C., Lakhai, W., Koudstaal, W., Verhoeven, M., Koel, B. F., Vogels, R., Goudsmit, J., Havenga, M. J. & Kostense, S. ( 2003; ). Quantifying adenovirus-neutralizing antibodies by luciferase transgene detection: addressing preexisting immunity to vaccine and gene therapy vectors. J Clin Microbiol 41, 5046–5052.[CrossRef]
    [Google Scholar]
  48. Stockwin, L. H., Matzow, T., Georgopoulos, N. T., Stanbridge, L. J., Jones, S. V., Martin, I. G., Blair-Zajdel, M. E. & Blair, G. E. ( 2002; ). Engineered expression of the coxsackie B and adenovirus receptor (CAR) in human dendritic cells enhances recombinant adenovirus-mediated gene transfer. J Immunol Methods 259, 205–215.[CrossRef]
    [Google Scholar]
  49. Stone, D., Ni, S., Li, Z. Y., Gaggar, A., DiPaolo, N., Feng, Q., Sandig, V. & Lieber, A. ( 2005; ). Development and assessment of human adenovirus type 11 as a gene transfer vector. J Virol 79, 5090–5104.[CrossRef]
    [Google Scholar]
  50. Tallone, T., Malin, S., Samuelsson, A., Wilbertz, J., Miyahara, M., Okamoto, K., Poellinger, L., Philipson, L. & Pettersson, S. ( 2001; ). A mouse model for adenovirus gene delivery. Proc Natl Acad Sci U S A 98, 7910–7915.[CrossRef]
    [Google Scholar]
  51. Thirion, C., Larochelle, N., Volpers, C., Dunant, P., Stucka, R., Holland, P., Nalbantoglu, J., Kochanek, S. & Lochmuller, H. ( 2002; ). Strategies for muscle-specific targeting of adenoviral gene transfer vectors. Neuromuscul Disord 12, 30–39.[CrossRef]
    [Google Scholar]
  52. Thorley, B. R., Milland, J., Christiansen, D. & 9 other authors ( 1997; ). Transgenic expression of a CD46 (membrane cofactor protein) minigene: studies of xenotransplantation and measles virus infection. Eur J Immunol 27, 726–734.[CrossRef]
    [Google Scholar]
  53. Vogels, R., Zuijdgeest, D., van Rijnsoever, R. & 20 other authors ( 2003; ). Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of pre-existing adenovirus immunity. J Virol 77, 8263–8271.[CrossRef]
    [Google Scholar]
  54. Von Seggern, D. J., Kehler, J., Endo, R. I. & Nemerow, G. R. ( 1998; ). Complementation of a fibre mutant adenovirus by packaging cell lines stably expressing the adenovirus type 5 fibre protein. J Gen Virol 79, 1461–1468.
    [Google Scholar]
  55. Von Seggern, D. J., Huang, S., Fleck, S. K., Stevenson, S. C. & Nemerow, G. R. ( 2000; ). Adenovirus vector pseudotyping in fiber-expressing cell lines: improved transduction of Epstein–Barr virus-transformed B cells. J Virol 74, 354–362.[CrossRef]
    [Google Scholar]
  56. Wu, E., Trauger, S. A., Pache, L., Mullen, T. M., von Seggern, D. J., Siuzdak, G. & Nemerow, G. R. ( 2004; ). Membrane cofactor protein is a receptor for adenoviruses associated with epidemic keratoconjunctivitis. J Virol 78, 3897–3905.[CrossRef]
    [Google Scholar]
  57. Xiang, Z., Gao, G., Reyes-Sandoval, A., Cohen, C. J., Li, Y., Bergelson, J. M., Wilson, J. M. & Ertl, H. C. ( 2002; ). Novel, chimpanzee serotype 68-based adenoviral vaccine carrier for induction of antibodies to a transgene product. J Virol 76, 2667–2675.[CrossRef]
    [Google Scholar]
  58. Yannoutsos, N., Ijzermans, J. N., Harkes, C., Bonthuis, F., Zhou, C. Y., White, D., Marquet, R. L. & Grosveld, F. ( 1996; ). A membrane cofactor protein transgenic mouse model for the study of discordant xenograft rejection. Genes Cells 1, 409–419.[CrossRef]
    [Google Scholar]
  59. Zakhartchouk, A., Zhou, Y. & Tikoo, S. K. ( 2003; ). A recombinant E1-deleted porcine adenovirus-3 as an expression vector. Virology 313, 377–386.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81293-0
Loading
/content/journal/jgv/10.1099/vir.0.81293-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error