1887

Abstract

Baculovirus chitinases and other family 18 glycohydrolases have been shown to possess both exo- and endochitinase activities when assayed against fluorescent chito-oligosaccharides. Homology modelling of the chitinase of (EppoNPV) against chitinase A indicated that the enzyme possesses an N-terminal polycystic kidney 1 (PKD1) domain for chitin-substrate feeding and an TIM barrel catalytic domain characteristic of a family 18 glycohydrolase. EppoNPV chitinase has many features in common with other baculovirus chitinases, including high amino acid identity, an N-terminal secretion signal and a functional C-terminal endoplasmic reticulum-retention sequence. EppoNPV chitinase displayed exo- and endochitinolytic activity against fluorescent chito-oligosaccharides, with values of 270±60 and 240±40 μM against 4MU-(GlcNAc) and 20±6 and 14±7 μM against 4MU-(GlcNAc) for native and recombinant versions of the enzyme, respectively. In contrast, digestion and thin-layer chromatography analysis of short-chain (GlcNAc) chito-oligosaccharides without the fluorescent 4-methylumbelliferone (4MU) moiety produced predominantly (GlcNAc), indicating an exochitinase, although low-level endochitinase activity was detected. Digestion of long-chain colloidal -chitin and analysis by mass spectrometry identified a single 447 Da peak, representing a singly charged (GlcNAc) complexed with a sodium adduct ion, confirming the enzyme as an exochitinase with no detectable endochitinolytic activity. Furthermore, (GlcNAc) substrates, but not (GlcNAc), acted as inhibitors of EppoNPV chitinase. Short-chain substrates are unlikely to interact with the aromatic residues of the PKD1 substrate-feeding mechanism and hence may not accurately reflect the activity of these enzymes against native substrates. Based upon these results, the chitinase of the baculovirus EppoNPV is an exochitinase.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81262-0
2005-12-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/12/3253.html?itemId=/content/journal/jgv/10.1099/vir.0.81262-0&mimeType=html&fmt=ahah

References

  1. Aronson N. N. Jr, Halloran B. A., Alexyev M. F., Amable L., Madura J. D., Pasupulati L., Worth C., Van Roey P. 2003; Family 18 chitinase–oligosaccharide substrate interaction: subsite preference and anomer selectivity of Serratia marcescens chitinase A. Biochem J 376:87–95 [CrossRef]
    [Google Scholar]
  2. Bork P., Doolittle R. F. 1992; Proposed acquisition of an animal protein domain by bacteria. Proc Natl Acad Sci U S A 89:8990–8994 [CrossRef]
    [Google Scholar]
  3. Brurberg M. B., Synstad B., Klemsdal S. S., van Aalten D. M. F., Sundheim L., Eijsink V. G. H. 2001; Chitinases from Serratia marcescens . Recent Res Dev Microbiol 5:187–204
    [Google Scholar]
  4. Bycroft M., Bateman A., Clarke J., Hamill S. J., Sandford R., Thomas R. L., Chothia C. 1999; The structure of a PKD domain from polycystin-1: implications for polycystic kidney disease. EMBO J 18:297–305 [CrossRef]
    [Google Scholar]
  5. Gomi S., Majima K., Maeda S. 1999; Sequence analysis of the genome of Bombyx mori nucleopolyhedrovirus. J Gen Virol 80:1323–1337
    [Google Scholar]
  6. Hawtin R. E., Arnold K., Ayres M. D. 7 other authors 1995; Identification and preliminary characterization of a chitinase gene in the Autographa californica nuclear polyhedrosis virus genome. Virology 212:673–685 [CrossRef]
    [Google Scholar]
  7. Hawtin R. E., Zarkowska T., Arnold K., Thomas C. J., Gooday G. W., King L. A., Kuzio J. A., Possee R. D. 1997; Liquefaction of Autographa californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Virology 238:243–253 [CrossRef]
    [Google Scholar]
  8. Henrissat B. 1991; A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316
    [Google Scholar]
  9. Henrissat B., Bairoch A. 1993; New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788
    [Google Scholar]
  10. Kasprzewska A. 2003; Plant chitinases – regulation and function. Cell Mol Biol Lett 8:809–824
    [Google Scholar]
  11. Koga D., Sasaki Y., Uchiumi Y., Hirai N., Arakane Y., Nagamatsu Y. 1997; Purification and characterization of Bombyx mori chitinases. Insect Biochem Mol Biol 27:757–767 [CrossRef]
    [Google Scholar]
  12. McCreath K. J., Gooday G. W. 1992; A rapid and sensitive microassay for determination of chitinolytic activity. J Microbiol Methods 14:229–337 [CrossRef]
    [Google Scholar]
  13. Merzendorfer H., Zimoch L. 2003; Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393–4412 [CrossRef]
    [Google Scholar]
  14. Nagy T., Simpson P., Williamson M. P., Hazlewood G. P., Gilbert H. J., Orosz L. 1998; All three surface tryptophans in type IIa cellulose binding domains play a pivotal role in binding both soluble and insoluble ligands. FEBS Lett 429:312–316 [CrossRef]
    [Google Scholar]
  15. Papanikolau Y., Prag G., Tavlas G., Vorgias C. E., Oppenheim A. B., Petratos K. 2001; High resolution structural analyses of mutant chitinase A complexes with substrates provide new insight into the mechanism of catalysis. Biochemistry 40:11338–11343 [CrossRef]
    [Google Scholar]
  16. Papanikolau Y., Tavlas G., Vorgias C. E., Petratos K. 2003; De novo purification scheme and crystallization conditions yield high-resolution structures of chitinase A and its complex with the inhibitor allosamidin. Acta Crystallogr D Biol Crystallogr 59:400–403 [CrossRef]
    [Google Scholar]
  17. Perrakis A., Tews I., Dauter Z., Oppenheim A. B., Chet I., Wilson K. S., Vorgias C. E. 1994; Crystal structure of a bacterial chitinase at 2·3 Å resolution. Structure 2:1169–1180 [CrossRef]
    [Google Scholar]
  18. Perrakis A., Ouzounis C., Wilson K. S. 1997; Evolution of immunoglobulin-like modules in chitinases: their structural flexibility and functional implications. Fold Des 2:291–294 [CrossRef]
    [Google Scholar]
  19. Rao R., Fiandra L., Giordana B., de Eguileor M., Congiu T., Burlini N., Arciello S., Corrado G., Pennacchio F. 2004; AcMNPV ChiA protein disrupts the peritrophic membrane and alters midgut physiology of Bombyx mori larvae. Insect Biochem Mol Biol 34:1205–1213 [CrossRef]
    [Google Scholar]
  20. Saville G. P., Thomas C. J., Possee R. D., King L. A. 2002; Partial redistribution of the Autographa californica nucleopolyhedrovirus chitinase in virus-infected cells accompanies mutation of the carboxy-terminal KDEL ER-retention motif. J Gen Virol 83:685–694
    [Google Scholar]
  21. Saville G. P., Patmanidi A. L., Possee R. D., King L. A. 2004; Deletion of the Autographa californica nucleopolyhedrovirus chitinase KDEL motif and in vitro and in vivo analysis of the modified virus. J Gen Virol 85:821–831 [CrossRef]
    [Google Scholar]
  22. Suginta W., Vongsuwan A., Songsiriritthigul C., Prinz H., Estibeiro P., Duncan R. R., Svasti J., Fothergill-Gilmore L. A. 2004; An endochitinase A from Vibrio carchariae : cloning, expression, mass and sequence analyses, and chitin hydrolysis. Arch Biochem Biophys 424:171–180 [CrossRef]
    [Google Scholar]
  23. Tanaka T., Fujiwara S., Nishikori S., Fukui T., Takagi M., Imanaka T. 1999; A unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. Appl Environ Microbiol 65:5338–5344
    [Google Scholar]
  24. Thomas C. J., Brown H. L., Hawes C. R., Lee B. Y., Min M.-K., King L. A., Possee R. D. 1998; Localization of a baculovirus-induced chitinase in the insect cell endoplasmic reticulum. J Virol 72:10207–10212
    [Google Scholar]
  25. Thomas C. J., Gooday G. W., King L. A., Possee R. D. 2000; Mutagenesis of the active site coding region of the Autographa californica nucleopolyhedrovirus chiA gene. J Gen Virol 81:1403–1411
    [Google Scholar]
  26. Uchiyama T., Katouno F., Nikaidou N., Nonaka T., Sugiyama J., Watanabe T. 2001; Roles of the exposed aromatic residues in crystalline chitin hydrolysis by chitinase A from Serratia marcescens 2170. J Biol Chem 276:41343–41349 [CrossRef]
    [Google Scholar]
  27. van Aalten D. M. F., Komander D., Synstad B., Gåseidnes S., Peter M. G., Eijsink V. G. H. 2001; Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc Natl Acad Sci U S A 98:8979–8984 [CrossRef]
    [Google Scholar]
  28. Walkley J. W., Tillman J. 1977; A simple thin-layer chromatographic technique for the separation of mono- and oligosaccharides. J Chromatogr 132:172–174 [CrossRef]
    [Google Scholar]
  29. Williams S. J., Mark B. L., Vocadlo D. J., James M. N. G., Withers S. G. 2002; Aspartate 313 in the Streptomyces plicatus hexosaminidase plays a critical role in substrate-assisted catalysis by orienting the 2-acetamido group and stabilizing the transition state. J Biol Chem 277:40055–40065 [CrossRef]
    [Google Scholar]
  30. Zheng Y., Zheng S., Cheng X., Ladd T., Lingohr E. J., Krell P. J., Arif B. M., Retnakaran A., Feng Q. 2002; A molt-associated chitinase cDNA from the spruce budworm, Choristoneura fumiferana . Insect Biochem Mol Biol 32:1813–1823 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81262-0
Loading
/content/journal/jgv/10.1099/vir.0.81262-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error