1887

Abstract

The pathogenesis of coxsackie B virus (CVB) infections is generally studied in mice by intraperitoneal (i.p.) injection, whereas the gastrointestinal tract is the natural porte d'entrée in humans. The present study was undertaken to compare systematically the influence of infection route on morbidity and pathology. Swiss Albino mice were infected with CVB3 (Nancy) at different doses (5×10, 5×10, 5×10, 5×10 TCID), given either i.p. or orally. Virus could be isolated from several organs (heart, spleen and pancreas), indicating systemic infection, irrespective of the infection route. Virus titres were 1–2 logs higher after i.p. infection, but kinetics were largely independent of infection route. Organs became negative for virus isolation after 21 days, with the exception of spleen tissue, which remained positive for up to 49 days. Thereafter, virus was detected only by immunohistochemistry and PCR up to 98 days post-infection (oral route). Histopathology showed mild inflammation and necrosis in heart tissue of all mice during the acute phase, with repair at later stages. Strikingly, pancreatic lesions were confined to the exocrine pancreas and observed only after i.p. infection. Under all experimental conditions, the pancreatic islets were spared. In contrast, immunohistochemistry showed the presence of viral VP1, protein 3A and alpha interferon (IFN-) in exocrine as well as endocrine pancreas of all mice, irrespective of route and dose of infection. It is concluded that infection via the oral route protects the pancreas from damage, but not from infection, a process in which IFN- is not the only factor involved.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81249-0
2005-12-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/12/3271.html?itemId=/content/journal/jgv/10.1099/vir.0.81249-0&mimeType=html&fmt=ahah

References

  1. Bopegamage, S. A. & Petrovicova, A. ( 1994; ). In vitro infection of mouse pancreatic islet cells with coxsackie viruses. Acta Virol 38, 251–255.
    [Google Scholar]
  2. Bopegamage, S., Borsanyiova, M., Vargova, A., Petrovicova, A., Benkovicova, M. & Gomolcak, P. ( 2003; ). Coxsackievirus infection of mice. I. Viral kinetics and histopathological changes in mice experimentally infected with coxsackieviruses B3 and B4 by oral route. Acta Virol 47, 245–251.
    [Google Scholar]
  3. Bourlet, T., Omar, S., Grattard, F. & Pozzetto, B. ( 1997; ). Detection of coxsackievirus B3 in intestinal tissue of orally-infected mice by a standardized RT-PCR assay. Clin Diagn Virol 8, 143–150.[CrossRef]
    [Google Scholar]
  4. Chatterjee, N. K. & Nejman, C. ( 1988; ). Insulin mRNA content in pancreatic beta cells of coxsackievirus B4-induced diabetic mice. Mol Cell Endocrinol 55, 193–202.[CrossRef]
    [Google Scholar]
  5. Chehadeh, W., Kerr-Conte, J., Pattou, F., Alm, G., Lefebvre, J., Wattré, P. & Hober, D. ( 2000; ). Persistent infection of human pancreatic islets by coxsackievirus B is associated with alpha interferon synthesis in β cells. J Virol 74, 10153–10164.[CrossRef]
    [Google Scholar]
  6. Chen, Y.-C., Yu, C.-K., Wang, Y.-F., Liu, C.-C. Su, I.-J. & Lei, H.-Y. ( 2004; ). A murine oral enterovirus 71 infection model with central nervous system involvement. J Gen Virol 85, 69–77.[CrossRef]
    [Google Scholar]
  7. Chung, P.-W., Huang, Y.-C., Chang, L.-Y., Lin, T.-Y. & Ning, H.-C. ( 2001; ). Duration of enterovirus shedding in stool. J Microbiol Immunol Infect 34, 167–170.
    [Google Scholar]
  8. Devendra, D. & Eisenbarth, G. S. ( 2004; ). Interferon alpha – a potential link in the pathogenesis of viral-induced type 1 diabetes and autoimmunity. Clin Immunol 111, 225–233.[CrossRef]
    [Google Scholar]
  9. Drescher, K. M., Kono, K., Bopegamage, S., Carson, S. D. & Tracy, S. ( 2004; ). Coxsackievirus B3 infection and type 1 diabetes development in NOD mice: insulitis determines susceptibility of pancreatic islets to virus infection. Virology 329, 381–394.[CrossRef]
    [Google Scholar]
  10. Flodström, M., Maday, A., Balakrishna, D., Cleary, M. M., Yoshimura, A. & Sarvetnick, N. ( 2002; ). Target cell defense prevents the development of diabetes after viral infection. Nat Immunol 3, 373–382.[CrossRef]
    [Google Scholar]
  11. Flodström, M., Tsai, D., Fine, C., Maday, A. & Sarvetnick, N. ( 2003; ). Diabetogenic potential of human pathogens uncovered in experimentally permissive β-cells. Diabetes 52, 2025–2034.[CrossRef]
    [Google Scholar]
  12. Galama, J. M. D. ( 1997; ). Enteroviral infections in the immunocompromised host. Rev Med Microbiol 8, 33–40.[CrossRef]
    [Google Scholar]
  13. Gauntt, C. J. ( 2003; ). Introduction and historical perspective on experimental myocarditis. In Myocarditis: from Bench to Bedside, pp. 1–22. Edited by L. T. Cooper, Jr. Totowa, NJ: Humana Press.
  14. Harrath, R., Bourlet, T., Delézay, O., Douche-Aourik, F., Omar, S., Aouni, M. & Pozzetto, B. ( 2004; ). Coxsackievirus B3 replication and persistence in intestinal cells from mice infected orally and in the human CaCo-2 cell line. J Med Virol 74, 283–290.[CrossRef]
    [Google Scholar]
  15. Horwitz, M. S., Bradley, L. M., Harbertson, J., Krahl, T., Lee, J. & Sarvetnick, N. ( 1998; ). Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med 4, 781–785.[CrossRef]
    [Google Scholar]
  16. Horwitz, M. S., Ilic, A., Fine, C., Rodriguez, E. & Sarvetnick, N. ( 2003; ). Coxsackievirus-mediated hyperglycemia is enhanced by reinfection and this occurs independent of T cells. Virology 314, 510–520.[CrossRef]
    [Google Scholar]
  17. Hyöty, H. & Taylor, K. W. ( 2002; ). The role of viruses in human diabetes. Diabetologia 45, 1353–1361.[CrossRef]
    [Google Scholar]
  18. Kaplan, A. S. & Melnick, J. L. ( 1951; ). Oral administration of Coxsackie viruses to newborn and adult mice. Proc Soc Exp Biol Med 76, 312–315.[CrossRef]
    [Google Scholar]
  19. King, A. M. Q., Brown, F., Christian, P. & 8 other authors ( 2000; ). Family Picornaviridae. In Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses, pp. 657–678. Edited by M. H. V. van Regenmortel, C. M. Fauquet, D. H. L. Bishop, E. B. Carstens, M. K. Estes, S. M. Lemon, J. Maniloff, M. A. Mayo, D. J. McGeoch, C. R. Pringle & R. B. Wickner. San Diego: Academic Press.
  20. Klingel, K., Stephan, S., Sauter, M., Zell, R., McManus, B. M., Bültmann, B. & Kandolf, R. ( 1996; ). Pathogenesis of murine enterovirus myocarditis: virus dissemination and immune cell targets. J Virol 70, 8888–8895.
    [Google Scholar]
  21. Lang, K. S., Recher, M., Junt, T. & 12 other authors ( 2005; ). Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nat Med 11, 138–145.[CrossRef]
    [Google Scholar]
  22. Lehr, H.-A., Jacobs, T. W., Yaziji, H., Schnitt, S. J. & Gown, A. M. ( 2001; ). Quantitative evaluation of HER-2/neu status in breast cancer by fluorescence in situ hybridization and by immunohistochemistry with image analysis. Am J Clin Pathol 115, 814–822.[CrossRef]
    [Google Scholar]
  23. Loria, R. M., Kibrick, S. & Broitman, S. A. ( 1974a; ). Peroral infection with group B coxsackievirus in the newborn mouse: a model for human infection. J Infect Dis 130, 225–230.[CrossRef]
    [Google Scholar]
  24. Loria, R. M., Kibrick, S. & Broitman, S. A. ( 1974b; ). Peroral infection with group B coxsackievirus in the adult mouse: protective functions of the gut. J Infect Dis 130, 539–543.[CrossRef]
    [Google Scholar]
  25. Loria, R. M., Shadoff, N., Kibrick, S. & Broitman, S. ( 1976; ). Maturation of intestinal defenses against peroral infection with group B coxsackievirus in mice. Infect Immun 13, 1397–1401.
    [Google Scholar]
  26. Melchers, W., Zoll, J., van Kuppeveld, F., Swanink, C. & Galama, J. ( 1994; ). There is no evidence for persistent enterovirus infections in chronic medical conditions in humans. Rev Med Virol 4, 235–243.[CrossRef]
    [Google Scholar]
  27. Mena, I., Perry, C. M., Harkins, S., Rodriguez, F., Gebhard, J. & Whitton, J. L. ( 1999; ). The role of B lymphocytes in coxsackievirus B3 infection. Am J Pathol 155, 1205–1215.[CrossRef]
    [Google Scholar]
  28. Mena, I., Fischer, C., Gebhard, J. R., Perry, C. M., Harkins, S. & Whitton, J. L. ( 2000; ). Coxsackievirus infection of the pancreas: evaluation of receptor expression, pathogenesis, and immunopathology. Virology 271, 276–288.[CrossRef]
    [Google Scholar]
  29. Modlin, J. F. & Bowman, M. ( 1987; ). Perinatal transmission of coxsackievirus B3 in mice. J Infect Dis 156, 21–25.[CrossRef]
    [Google Scholar]
  30. Nagler-Anderson, C. ( 2001; ). Man the barrier! Strategic defences in the intestinal mucosa. Nat Rev Immunol 1, 59–67.[CrossRef]
    [Google Scholar]
  31. Opavsky, M.A., Penninger, J., Aitken, K., Wen, W.-H., Dawood, F., Mak, T. & Liu, P. ( 1999; ). Susceptibility to myocarditis is dependent on the response of αβ T lymphocytes to coxsackieviral infection. Circ Res 85, 551–558.[CrossRef]
    [Google Scholar]
  32. Paananen, A., Ylipaasto, P., Rieder, E., Hovi, T., Galama, J. & Roivainen, M. ( 2003; ). Molecular and biological analysis of echovirus 9 strain isolated from a diabetic child. J Med Virol 69, 529–537.[CrossRef]
    [Google Scholar]
  33. Pallansch, M. A. & Roos, R. P. ( 2001; ). Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In Fields Virology, 4th edn, pp. 723–775. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  34. Petrovicova, A. ( 1983; ). Experimental coxsackievirus B 1 infection in immunologically altered mice. J Hyg Epidemiol Microbiol Immunol 27, 149–154.
    [Google Scholar]
  35. Potvin, D. M., Metzger, D. W., Lee, W. T., Collins, D. N. & Ramsingh, A. I. ( 2003; ). Exogenous interleukin-12 protects against lethal infection with coxsackievirus B4. J Virol 77, 8272–8279.[CrossRef]
    [Google Scholar]
  36. Ramsingh, A. I., Chapman, N. & Tracy, S. ( 1997; ). Coxsackieviruses and diabetes. Bioessays 19, 793–800.[CrossRef]
    [Google Scholar]
  37. Reed, L. J. & Muench, H. ( 1938; ). A simple method of estimating fifty percent endpoints. Am J Hyg 27, 493–497.
    [Google Scholar]
  38. Roivainen, M., Ylipaasto, P., Savolainen, C., Galama, J., Hovi, T. & Otonkoski, T. ( 2002; ). Functional impairment and killing of human beta cells by enteroviruses: the capacity is shared by a wide range of serotypes, but the extent is a characteristic of individual virus strains. Diabetologia 45, 693–702.[CrossRef]
    [Google Scholar]
  39. See, D. M. & Tilles, J. G. ( 1995; ). Pathogenesis of virus-induced diabetes in mice. J Infect Dis 171, 1131–1138.[CrossRef]
    [Google Scholar]
  40. Swanink, C. M. A., Melchers, W. J. G., van der Meer, J. W. M., Vercoulen, J. H. M. M., Bleijenberg, G., Fennis, J. F. M. & Galama, J. M. D. ( 1994; ). Enteroviruses and the chronic fatigue syndrome. Clin Infect Dis 19, 860–864.[CrossRef]
    [Google Scholar]
  41. Tracy, S., Höfling, K., Pirruccello, S., Lane, P. H., Reyna, S. M. & Gauntt, C. J. ( 2000; ). Group B coxsackievirus myocarditis and pancreatitis: connection between viral virulence phenotypes in mice. J Med Virol 62, 70–81.[CrossRef]
    [Google Scholar]
  42. Tracy, S., Drescher, K. M., Chapman, N. M., Kim, K.-S., Carson, S. D., Pirruccello, S., Lane, P. H., Romero, J. R. & Leser, J. S. ( 2002; ). Toward testing the hypothesis that group B coxsackieviruses (CVB) trigger insulin-dependent diabetes: inoculating nonobese diabetic mice with CVB markedly lowers diabetes incidence. J Virol 76, 12097–12111.[CrossRef]
    [Google Scholar]
  43. Vargova, A., Bopegamage, S., Borsanyiova, M., Petrovicova, A. & Benkovicova, M. ( 2003; ). Coxsackievirus infection of mice. II. Viral kinetics and histopathological changes in mice experimentally infected with coxsackievirus B3 by intraperitoneal route. Acta Virol 47, 253–257.
    [Google Scholar]
  44. Vreugdenhil, G. R., Schloot, N. C., Hoorens, A., Rongen, C., Pipeleers, D. G., Melchers, W. J. G., Roep, B. O. & Galama, J. M. D. ( 2000; ). Acute onset of type 1 diabetes mellitus after severe echovirus 9 infection: putative pathogenic pathways. Clin Infect Dis 31, 1025–1031.[CrossRef]
    [Google Scholar]
  45. Yap, I. S., Giddings, G., Pocock, E. & Chantler, J. K. ( 2003; ). Lack of islet neogenesis plays a key role in beta-cell depletion in mice infected with a diabetogenic variant of coxsackievirus B4. J Gen Virol 84, 3051–3068.[CrossRef]
    [Google Scholar]
  46. Yoon, J. W., Austin, M., Onodera, T. & Notkins, A. L. ( 1979; ). Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 300, 1173–1179.[CrossRef]
    [Google Scholar]
  47. Zoll, G. J., Melchers, W. J. G., Kopecka, H., Jambroes, G., van der Poel, H. J. A. & Galama, J. M. D. ( 1992; ). General primer-mediated polymerase chain reaction for detection of enteroviruses: application for diagnostic routine and persistent infections. J Clin Microbiol 30, 160–165.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81249-0
Loading
/content/journal/jgv/10.1099/vir.0.81249-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error