1887

Abstract

Field strains of (FMDV) use a number of v-integrins as receptors to initiate infection on cultured cells, and integrins are believed to be the receptors used to target epithelial cells in animals. In this study, immunofluorescence confocal microscopy and real-time RT-PCR were used to investigate expression of two of the integrin receptors of FMDV, v6 and v3, within various epithelia targeted by this virus in cattle. These studies show that v6 is expressed constitutively on the surfaces of epithelial cells at sites where infectious lesions occur during a natural infection, but not at sites where lesions are not normally formed. Expression of v6 protein at these sites showed a good correlation with the relative abundance of 6 mRNA. In contrast, v3 protein was only detected at low levels on the vasculature and not on the epithelial cells of any of the tissues investigated. Together, these data suggest that in cattle, v6, rather than v3, serves as the major receptor that determines the tropism of FMDV for the epithelia normally targeted by this virus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81172-0
2005-10-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/10/2769.html?itemId=/content/journal/jgv/10.1099/vir.0.81172-0&mimeType=html&fmt=ahah

References

  1. Alexandersen, S., Oleksiewicz, M. B. & Donaldson, A. I. ( 2001; ). The early pathogenesis of foot-and-mouth disease in pigs infected by contact: a quantitative time-course study using TaqMan RT-PCR. J Gen Virol 82, 747–755.
    [Google Scholar]
  2. Alexandersen, S., Brotherhood, I. & Donaldson, A. I. ( 2002a; ). Natural aerosol transmission of foot-and-mouth disease virus to pigs: minimal infectious dose for strain O1 Lausanne. Epidemiol Infect 128, 301–312.
    [Google Scholar]
  3. Alexandersen, S., Zhang, Z. & Donaldson, A. I. ( 2002b; ). Aspects of the persistence of foot-and-mouth disease virus in animals – the carrier problem. Microbes Infect 4, 1099–1110.[CrossRef]
    [Google Scholar]
  4. Alexandersen, S., Zhang, Z., Reid, S. M., Hutchings, G. H. & Donaldson, A. I. ( 2002c; ). Quantities of infectious virus and viral RNA recovered from sheep and cattle experimentally infected with foot-and-mouth disease virus O UK 2001. J Gen Virol 83, 1915–1923.
    [Google Scholar]
  5. Alexandersen, S., Zhang, Z., Donaldson, A. I. & Garland, A. J. ( 2003; ). The pathogenesis and diagnosis of foot-and-mouth disease. J Comp Pathol 129, 1–36.[CrossRef]
    [Google Scholar]
  6. Baranowski, E., Sevilla, N., Verdaguer, N., Ruiz-Jarabo, C. M., Beck, E. & Domingo, E. ( 1998; ). Multiple virulence determinants of foot-and-mouth disease virus in cell culture. J Virol 72, 6362–6372.
    [Google Scholar]
  7. Baranowski, E., Ruiz-Jarabo, C. M., Sevilla, N., Andreu, D., Beck, E. & Domingo, E. ( 2000; ). Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility in aphthovirus receptor usage. J Virol 74, 1641–1647.[CrossRef]
    [Google Scholar]
  8. Bazzoni, G., Ma, L., Blue, M.-L. & Hemler, M. E. ( 1998; ). Divalent cations and ligands induce conformational changes that are highly divergent among β 1 integrins. J Biol Chem 273, 6670–6678.[CrossRef]
    [Google Scholar]
  9. Belsham, G. J., McInerney, G. M. & Ross-Smith, N. ( 2000; ). Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. J Virol 74, 272–280.[CrossRef]
    [Google Scholar]
  10. Berinstein, A., Roivainen, M., Hovi, T., Mason, P. W. & Baxt, B. ( 1995; ). Antibodies to the vitronectin receptor (integrin α V β 3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. J Virol 69, 2664–2666.
    [Google Scholar]
  11. Breuss, J. M., Gillett, N., Lu, L., Sheppard, D. & Pytela, R. ( 1993; ). Restricted distribution of integrin β6 mRNA in primate epithelial tissues. J Histochem Cytochem 41, 1521–1527.[CrossRef]
    [Google Scholar]
  12. Breuss, J. M., Gallo, J., DeLisser, H. M. & 13 other authors ( 1995; ). Expression of the β6 integrin subunit in development, neoplasia and tissue repair suggests a role in epithelial remodeling. J Cell Sci 108, 2241–2251.
    [Google Scholar]
  13. Brown, C. C., Olander, H. J. & Meyer, R. F. ( 1995; ). Pathogenesis of foot-and-mouth disease in swine, studied by in-situ hybridization. J Comp Pathol 113, 51–58.[CrossRef]
    [Google Scholar]
  14. Brown, C. C., Piccone, M. E., Mason, P. W., McKenna, T. S. & Grubman, M. J. ( 1996; ). Pathogenesis of wild-type and leaderless foot-and-mouth disease virus in cattle. J Virol 70, 5638–5641.
    [Google Scholar]
  15. Burns, J. A., Issekutz, T. B., Yagita, H. & Issekutz, A. C. ( 2001; ). The α 4 β 1 (very late antigen (VLA)-4, CD49d/CD29) and α 5 β 1 (VLA-5, CD49e/CD29) integrins mediate β 2 (CD11/CD18) integrin-independent neutrophil recruitment to endotoxin-induced lung inflammation. J Immunol 166, 4644–4649.[CrossRef]
    [Google Scholar]
  16. Burrows, R. ( 1966; ). Studies on the carrier state of cattle exposed to foot-and-mouth disease virus. J Hyg 64, 81–90.[CrossRef]
    [Google Scholar]
  17. Burrows, R., Mann, J. A., Garland, A. J., Greig, A. & Goodridge, D. ( 1981; ). The pathogenesis of natural and simulated natural foot-and-mouth disease infection in cattle. J Comp Pathol 91, 599–609.[CrossRef]
    [Google Scholar]
  18. Cambier, S., Mu, D. Z., O'Connell, D., Boylen, K., Travis, W., Liu, W. H., Broaddus, V. C. & Nishimura, S. L. ( 2000; ). A role for the integrin αvβ8 in the negative regulation of epithelial cell growth. Cancer Res 60, 7084–7093.
    [Google Scholar]
  19. Cavani, A., Zambruno, G., Marconi, A., Manca, V., Marchetti, M. & Giannetti, A. ( 1993; ). Distinctive integrin expression in the newly forming epidermis during wound healing in humans. J Invest Dermatol 101, 600–604.[CrossRef]
    [Google Scholar]
  20. Clark, R. A., Ashcroft, G. S., Spencer, M. J., Larjava, H. & Ferguson, M. W. ( 1996; ). Re-epithelialization of normal human excisional wounds is associated with a switch from αvβ5 to αvβ6 integrins. Br J Dermatol 135, 46–51.
    [Google Scholar]
  21. Damjanovich, L., Albelda, S. M., Mette, S. A. & Buck, C. A. ( 1992; ). Distribution of integrin cell adhesion receptors in normal and malignant lung tissue. Am J Respir Cell Mol Biol 6, 197–206.[CrossRef]
    [Google Scholar]
  22. Duque, H. & Baxt, B. ( 2003; ). Foot-and-mouth disease virus receptors: comparison of bovine α V integrin utilization by type A and O viruses. J Virol 77, 2500–2511.[CrossRef]
    [Google Scholar]
  23. Escarmis, C., Carrillo, E. C., Ferrer, M., Arriaza, J. F., Lopez, N., Tami, C., Verdaguer, N., Domingo, E. & Franze-Fernandez, M. T. ( 1998; ). Rapid selection in modified BHK-21 cells of a foot-and-mouth disease virus variant showing alterations in cell tropism. J Virol 72, 10171–10179.
    [Google Scholar]
  24. Fjellbirkeland, L., Cambier, S., Broaddus, V. C., Hill, A., Brunetta, P., Dolganov, G., Jablons, D. & Nishimura, S. L. ( 2003; ). Integrin αvβ8-mediated activation of transforming growth factor-β inhibits human airway epithelial proliferation in intact bronchial tissue. Am J Pathol 163, 533–542.[CrossRef]
    [Google Scholar]
  25. Gailit, J., Welch, M. P. & Clark, R. A. ( 1994; ). TGF-β1 stimulates expression of keratinocyte integrins during re-epithelialization of cutaneous wounds. J Invest Dermatol 103, 221–227.[CrossRef]
    [Google Scholar]
  26. Giancotti, F. G. ( 2003; ). A structural view of integrin activation and signaling. Dev Cell 4, 149–151.[CrossRef]
    [Google Scholar]
  27. Gonzalez-Amaro, R., Diaz-Gonzalez, F. & Sanchez-Madrid, F. ( 1998; ). Adhesion molecules in inflammatory diseases. Drugs 56, 977–988.[CrossRef]
    [Google Scholar]
  28. Haapasalmi, K., Makela, M., Oksala, O., Heino, J., Yamada, K. M., Uitto, V. J. & Larjava, H. ( 1995; ). Expression of epithelial adhesion proteins and integrins in chronic inflammation. Am J Pathol 147, 193–206.
    [Google Scholar]
  29. Haapasalmi, K., Zhang, K., Tonnesen, M. & 7 other authors ( 1996; ). Keratinocytes in human wounds express αvβ6 integrin. J Invest Dermatol 106, 42–48.[CrossRef]
    [Google Scholar]
  30. Hakkinen, L., Hildebrand, H. C., Berndt, A., Kosmehl, H. & Larjava, H. ( 2000; ). Immunolocalization of tenascin-C, α9 integrin subunit, and αvβ6 integrin during wound healing in human oral mucosa. J Histochem Cytochem 48, 985–998.[CrossRef]
    [Google Scholar]
  31. Hynes, R. O. ( 2002; ). Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687.[CrossRef]
    [Google Scholar]
  32. Jackson, T., Ellard, F. M., Ghazaleh, R. A., Brookes, S. M., Blakemore, W. E., Corteyn, A. H., Stuart, D. I., Newman, J. W. & King, A. M. ( 1996; ). Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J Virol 70, 5282–5287.
    [Google Scholar]
  33. Jackson, T., Sheppard, D., Denyer, M., Blakemore, W. & King, A. M. ( 2000; ). The epithelial integrin αvβ6 is a receptor for foot-and-mouth disease virus. J Virol 74, 4949–4956.[CrossRef]
    [Google Scholar]
  34. Jackson, T., Mould, A. P., Sheppard, D. & King, A. M. ( 2002; ). Integrin αvβ1 is a receptor for foot-and-mouth disease virus. J Virol 76, 935–941.[CrossRef]
    [Google Scholar]
  35. Jackson, T., King, A. M., Stuart, D. I. & Fry, E. ( 2003; ). Structure and receptor binding. Virus Res 91, 33–46.[CrossRef]
    [Google Scholar]
  36. Jackson, T., Clark, S., Berryman, S., Burman, A., Cambier, S., Mu, D., Nishimura, S. & King, A. M. ( 2004; ). Integrin αvβ8 functions as a receptor for foot-and-mouth disease virus: role of the β-chain cytodomain in integrin-mediated infection. J Virol 78, 4533–4540.[CrossRef]
    [Google Scholar]
  37. Juhasz, I., Murphy, G. F., Yan, H. C., Herlyn, M. & Albelda, S. M. ( 1993; ). Regulation of extracellular matrix proteins and integrin cell substratum adhesion receptors on epithelium during cutaneous human wound healing in vivo. Am J Pathol 143, 1458–1469.
    [Google Scholar]
  38. Kim, M., Carman, C. V. & Springer, T. A. ( 2003; ). Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301, 1720–1725.[CrossRef]
    [Google Scholar]
  39. Kubo, M., Van de Water, L., Plantefaber, L. C., Mosesson, M. W., Simon, M., Tonnesen, M. G., Taichman, L. & Clark, R. A. ( 2001; ). Fibrinogen and fibrin are anti-adhesive for keratinocytes: a mechanism for fibrin eschar slough during wound repair. J Invest Dermatol 117, 1369–1381.[CrossRef]
    [Google Scholar]
  40. Larjava, H., Salo, T., Haapasalmi, K., Kramer, R. H. & Heino, J. ( 1993; ). Expression of integrins and basement membrane components by wound keratinocytes. J Clin Invest 92, 1425–1435.[CrossRef]
    [Google Scholar]
  41. Logan, D., Abu-Ghazaleh, R., Blakemore, W. & 10 other authors ( 1993; ). Structure of a major immunogenic site on foot-and-mouth disease virus. Nature 362, 566–568.[CrossRef]
    [Google Scholar]
  42. Martinez, M. A., Verdaguer, N., Mateu, M. G. & Domingo, E. ( 1997; ). Evolution subverting essentiality: dispensability of the cell attachment Arg-Gly-Asp motif in multiply passaged foot-and-mouth disease virus. Proc Natl Acad Sci U S A 94, 6798–6802.[CrossRef]
    [Google Scholar]
  43. Mason, P. W., Baxt, B., Brown, F., Harber, J., Murdin, A. & Wimmer, E. ( 1993; ). Antibody-complexed foot-and-mouth disease virus, but not poliovirus, can infect normally insusceptible cells via the Fc receptor. Virology 192, 568–577.[CrossRef]
    [Google Scholar]
  44. McKenna, T. S., Lubroth, J., Rieder, E., Baxt, B. & Mason, P. W. ( 1995; ). Receptor binding site-deleted foot-and-mouth disease (FMD) virus protects cattle from FMD. J Virol 69, 5787–5790.
    [Google Scholar]
  45. McVicar, J. W. & Sutmoller, P. ( 1969; ). Sheep and goats as foot-and-mouth disease carriers. In Annual Meeting of the United States Livestock Sanitary Association, pp. 400–406: Proceedings of the Annual Meeting of the United States Livestock Sanitary Association.
  46. McVicar, J. W. & Sutmoller, P. ( 1971; ). Foot-and-mouth disease in sheep and goats: early virus growth in the pharynx and udder. In Annual Meeting of the United States Animal Health Association, pp. 194–199: Proceedings of the Annual Meeting of United States Animal Health Association.
  47. McVicar, J. W. & Sutmoller, P. ( 1976; ). Growth of foot-and-mouth disease virus in the upper respiratory tract of non-immunized, vaccinated, and recovered cattle after intranasal inoculation. J Hyg 76, 467–481.[CrossRef]
    [Google Scholar]
  48. Mette, S. A., Pilewski, J., Buck, C. A. & Albelda, S. M. ( 1993; ). Distribution of integrin cell adhesion receptors on normal bronchial epithelial cells and lung cancer cells in vitro and in vivo. Am J Respir Cell Mol Biol 8, 562–572.[CrossRef]
    [Google Scholar]
  49. Moffat, K., Howell, G., Knox, C., Belsham, G. J., Monaghan, P., Ryan, M. D. & Wileman, T. ( 2005; ). Effects of foot-and-mouth disease virus nonstructural proteins on the structure and function of the early secretory pathway: 2BC but not 3A blocks endoplasmic reticulum-to-Golgi transport. J Virol 79, 4382–4395.[CrossRef]
    [Google Scholar]
  50. Monaghan, P., Watson, P. R., Cook, H., Scott, L., Wallis, T. S. & Robertson, D. ( 2001; ). An improved method for preparing thick sections for immuno/histochemistry and confocal microscopy and its use to identify rare events. J Microsc 203, 223–226.[CrossRef]
    [Google Scholar]
  51. Monaghan, P., Simpson, J., Murphy, C., Durand, S., Quan, M. & Alexandersen, S. ( 2005; ). Use of confocal immunofluorescence microscopy to localize viral nonstructural proteins and potential sites of replication in pigs experimentally infected with foot-and-mouth disease virus. J Virol 79, 6410–6418.[CrossRef]
    [Google Scholar]
  52. Neff, S., Sa-Carvalho, D., Rieder, E., Mason, P. W., Blystone, S. D., Brown, E. J. & Baxt, B. ( 1998; ). Foot-and-mouth disease virus virulent for cattle utilizes the integrin α V β 3 as its receptor. J Virol 72, 3587–3594.
    [Google Scholar]
  53. Oleksiewicz, M. B., Donaldson, A. I. & Alexandersen, S. ( 2001; ). Development of a novel real-time RT-PCR assay for quantitation of foot-and-mouth disease virus in diverse porcine tissues. J Virol Methods 92, 23–35.[CrossRef]
    [Google Scholar]
  54. Pilewski, J. M., Latoche, J. D., Arcasoy, S. M. & Albelda, S. M. ( 1997; ). Expression of integrin cell adhesion receptors during human airway epithelial repair in vivo. Am J Physiol Lung Cell Mol Physiol 273, L256–263.
    [Google Scholar]
  55. Prato Murphy, M. L., Meyer, R. F., Mebus, C., Schudel, A. A. & Rodriguez, M. ( 1994; ). Analysis of sites of foot and mouth disease virus persistence in carrier cattle via the polymerase chain reaction. Arch Virol 136, 299–307.[CrossRef]
    [Google Scholar]
  56. Prato Murphy, M. L., Forsyth, M. A., Belsham, G. J. & Salt, J. S. ( 1999; ). Localization of foot-and-mouth disease virus RNA by in situ hybridisation within bovine tissues. Virus Res 62, 67–76.[CrossRef]
    [Google Scholar]
  57. Reid, S. M., Ferris, N. P., Hutchings, G. H., Zhang, Z., Belsham, G. J. & Alexandersen, S. ( 2002; ). Detection of all seven serotypes of foot-and-mouth disease virus by real-time, fluorogenic reverse transcription polymerase chain reaction assay. J Virol Methods 105, 67–80.[CrossRef]
    [Google Scholar]
  58. Reid, S. M., Grierson, S. S., Ferris, N. P., Hutchings, G. H. & Alexandersen, S. ( 2003; ). Evaluation of automated RT-PCR to accelerate the laboratory diagnosis of foot-and-mouth disease virus. J Virol Methods 107, 129–139.[CrossRef]
    [Google Scholar]
  59. Sa-Carvalho, D., Rieder, E., Baxt, B., Rodarte, R., Tanuri, A. & Mason, P. W. ( 1997; ). Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J Virol 71, 5115–5123.
    [Google Scholar]
  60. Salt, J. S. ( 1993; ). The carrier state in foot and mouth disease – an immunological review. Br Vet J 149, 207–223.[CrossRef]
    [Google Scholar]
  61. Salt, J. S. ( 1998; ). Persistent infection with foot-and-mouth disease virus. Topics in Tropical Virology 1, 77–128.
    [Google Scholar]
  62. Singh, B., Fu, C. & Bhattacharya, J. ( 2000; ). Vascular expression of the α V β 3-integrin in lung and other organs. Am J Physiol Lung Cell Mol Physiol 278, L217–226.
    [Google Scholar]
  63. Singh, B., Rawlings, N. & Kaur, A. ( 2001; ). Expression of integrin αvβ3 in pig, dog and cattle. Histol Histopathol 16, 1037–1046.
    [Google Scholar]
  64. Springer, T. A. ( 1990; ). Adhesion receptors of the immune system. Nature 346, 425–434.[CrossRef]
    [Google Scholar]
  65. Wang, A., Yokosaki, Y., Ferrando, R., Balmes, J. & Sheppard, D. ( 1996; ). Differential regulation of airway epithelial integrins by growth factors. Am J Respir Cell Mol Biol 15, 664–672.[CrossRef]
    [Google Scholar]
  66. Weinreb, P. H., Simon, K. J., Rayhorn, P. & 9 other authors ( 2004; ). Function-blocking integrin α V β 6 monoclonal antibodies: distinct ligand-mimetic and nonligand-mimetic classes. J Biol Chem 279, 17875–17887.[CrossRef]
    [Google Scholar]
  67. Woodbury, E. L., Ilott, M. C., Brown, C. C. & Salt, J. S. ( 1995; ). Optimization of an in situ hybridization technique for the detection of foot-and-mouth disease virus in bovine tissues using the digoxigenin system. J Virol Methods 51, 89–93.[CrossRef]
    [Google Scholar]
  68. Zambruno, G., Marchisio, P. C., Marconi, A., Vaschieri, C., Melchiori, A., Giannetti, A. & De Luca, M. ( 1995; ). Transforming growth factor-β1 modulates β1 and β5 integrin receptors and induces the de novo expression of the αvβ6 heterodimer in normal human keratinocytes: implications for wound healing. J Cell Biol 129, 853–865.[CrossRef]
    [Google Scholar]
  69. Zhang, Z. & Kitching, P. ( 2000; ). A sensitive method for the detection of foot and mouth disease virus by in situ hybridisation using biotin-labelled oligodeoxynucleotides and tyramide signal amplification. J Virol Methods 88, 187–192.[CrossRef]
    [Google Scholar]
  70. Zhang, Z. D. & Kitching, R. P. ( 2001; ). The localization of persistent foot and mouth disease virus in the epithelial cells of the soft palate and pharynx. J Comp Pathol 124, 89–94.[CrossRef]
    [Google Scholar]
  71. Zhang, Z. & Alexandersen, S. ( 2003; ). Detection of carrier cattle and sheep persistently infected with foot-and-mouth disease virus by a rapid real-time RT-PCR assay. J Virol Methods 111, 95–100.[CrossRef]
    [Google Scholar]
  72. Zhang, Z. & Alexandersen, S. ( 2004; ). Quantitative analysis of foot-and-mouth disease virus RNA loads in bovine tissues: implications for the site of viral persistence. J Gen Virol 85, 2567–2575.[CrossRef]
    [Google Scholar]
  73. Zhang, Z., Murphy, C., Quan, M., Knight, J. & Alexandersen, S. ( 2004; ). Extent of reduction of foot-and-mouth disease virus RNA load in oesophageal-pharyngeal fluid after peak levels may be a critical determinant of virus persistence in infected cattle. J Gen Virol 85, 415–421.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81172-0
Loading
/content/journal/jgv/10.1099/vir.0.81172-0
Loading

Data & Media loading...

Supplements

Fig. 1(8.74 MB)

IMAGE

To allow greater detail to be distinguished in the figures, higher-resolution versions can be accessed below. Please be aware that each file is approximately 10 MB and may take some time to download.

IMAGE

Fig. 2(9.81 MB)

IMAGE

To allow greater detail to be distinguished in the figures, higher-resolution versions can be accessed below. Please be aware that each file is approximately 10 MB and may take some time to download.

IMAGE

Fig. 3(9.84 MB)

IMAGE

To allow greater detail to be distinguished in the figures, higher-resolution versions can be accessed below. Please be aware that each file is approximately 10 MB and may take some time to download.

IMAGE

Fig. 4(10.0 MB)

IMAGE

To allow greater detail to be distinguished in the figures, higher-resolution versions can be accessed below. Please be aware that each file is approximately 10 MB and may take some time to download.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error