1887

Abstract

Due to the continuous need for new vaccines, viral vaccine vectors have become increasingly attractive. In particular, herpes simplex virus type 1 (HSV-1)-based vectors offer many advantages, such as broad cellular tropism, large DNA-packaging capacity and the induction of pro-inflammatory responses. However, despite promising results obtained with HSV-1-derived vectors, the question of whether pre-existing virus-specific host immunity affects vaccine efficacy remains controversial. For this reason, the influence of pre-existing HSV-1-specific immunity on the immune response induced with a replication-defective, recombinant HSV-1 vaccine was investigated . It was shown that humoral as well as cellular immune responses against a model antigen encoded by the vaccine were strongly diminished in HSV-1-seropositive mice. This inhibition could be observed in mice infected with wild-type HSV-1 or with a replication-defective vector. Although these data clearly indicate that pre-existing antiviral host immunity impairs the efficacy of HSV-1-derived vaccine vectors, they also show that vaccination under these constraints might still be feasible.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81104-0
2005-09-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/9/vir862401.html?itemId=/content/journal/jgv/10.1099/vir.0.81104-0&mimeType=html&fmt=ahah

References

  1. Advani, S. J., Weichselbaum, R. R., Whitley, R. J. & Roizman, B. ( 2002; ). Friendly fire: redirecting herpes simplex virus-1 for therapeutic applications. Clin Microbiol Infect 8, 551–563.[CrossRef]
    [Google Scholar]
  2. Ahmad, A., Sharif-Askari, E., Fawaz, L. & Menezes, J. ( 2000; ). Innate immune response of the human host to exposure with herpes simplex virus type 1: in vitro control of the virus infection by enhanced natural killer activity via interleukin-15 induction. J Virol 74, 7196–7203.[CrossRef]
    [Google Scholar]
  3. Brockman, M. A. & Knipe, D. M. ( 2002; ). Herpes simplex virus vectors elicit durable immune responses in the presence of preexisting host immunity. J Virol 76, 3678–3687.[CrossRef]
    [Google Scholar]
  4. Bukowski, J. F., Morita, C. T. & Brenner, M. B. ( 1994; ). Recognition and destruction of virus-infected cells by human gamma delta CTL. J Immunol 153, 5133–5140.
    [Google Scholar]
  5. Burton, E. A., Wechuck, J. B., Wendell, S. K., Goins, W. F., Fink, D. J. & Glorioso, J. C. ( 2001; ). Multiple applications for replication-defective herpes simplex virus vectors. Stem Cells 19, 358–377.[CrossRef]
    [Google Scholar]
  6. Cassady, K. A., Gross, M. & Roizman, B. ( 1998; ). The second-site mutation in the herpes simplex virus recombinants lacking the gamma134.5 genes precludes shutoff of protein synthesis by blocking the phosphorylation of eIF-2alpha. J Virol 72, 7005–7011.
    [Google Scholar]
  7. Chahlavi, A., Rabkin, S., Todo, T., Sundaresan, P. & Martuza, R. ( 1999; ). Effect of prior exposure to herpes simplex virus 1 on viral vector-mediated tumor therapy in immunocompetent mice. Gene Ther 6, 1751–1758.[CrossRef]
    [Google Scholar]
  8. Coffin, R. S., Thomas, S. K., Thomas, N. S. & 11 other authors ( 1998; ). Pure populations of transduced primary human cells can be produced using GFP expressing herpes virus vectors and flow cytometry. Gene Ther 5, 718–722.[CrossRef]
    [Google Scholar]
  9. Cunningham, A. L., Mindel, A. & Dwyer, D. E. ( 2000; ). Global epidemiology of sexually transmitted diseases. In Sexually Transmitted Disease, pp. 3–42. Edited by L. R. Stanberry & D. Bernstein. San Diego: Academic Press.
  10. Da Costa, X. J., Brockman, M. A., Alicot, E., Ma, M., Fischer, M. B., Zhou, X., Knipe, D. M. & Carroll, M. C. ( 1999; ). Humoral response to herpes simplex virus is complement-dependent. Proc Natl Acad Sci U S A 96, 12708–12712.[CrossRef]
    [Google Scholar]
  11. Deshpande, S. P., Kumaraguru, U. & Rouse, B. T. ( 2000; ). Why do we lack an effective vaccine against herpes simplex virus infections? Microbes Infect 2, 973–978.[CrossRef]
    [Google Scholar]
  12. Etlinger, H. M. & Altenburger, W. ( 1991; ). Overcoming inhibition of antibody responses to a malaria recombinant vaccinia virus caused by prior exposure to wild type virus. Vaccine 9, 470–472.[CrossRef]
    [Google Scholar]
  13. Farrell, H. E., McLean, C. S., Harley, C., Efstathiou, S., Inglis, S. & Minson, A. C. ( 1994; ). Vaccine potential of a herpes simplex virus type 1 mutant with an essential glycoprotein deleted. J Virol 68, 927–932.
    [Google Scholar]
  14. Feduchi, E., Alonso, M. A. & Carrasco, L. ( 1989; ). Human gamma interferon and tumor necrosis factor exert a synergistic blockade on the replication of herpes simplex virus. J Virol 63, 1354–1359.
    [Google Scholar]
  15. Friedman, H. M., Wang, L., Pangburn, M. K., Lambris, J. D. & Lubinski, J. ( 2000; ). Novel mechanism of antibody-independent complement neutralization of herpes simplex virus type 1. J Immunol 165, 4528–4536.[CrossRef]
    [Google Scholar]
  16. Fries, L. F., Friedman, H. M., Cohen, G. H., Eisenberg, R. J., Hammer, C. H. & Frank, M. M. ( 1986; ). Glycoprotein C of herpes simplex virus 1 is an inhibitor of the complement cascade. J Immunol 137, 1636–1641.
    [Google Scholar]
  17. Geiss, B. J., Smith, T. J., Leib, D. A. & Morrison, L. A. ( 2000; ). Disruption of virion host shutoff activity improves the immunogenicity and protective capacity of a replication-incompetent herpes simplex virus type 1 vaccine strain. J Virol 74, 11137–11144.[CrossRef]
    [Google Scholar]
  18. Hardy, W. R. & Sandri-Goldin, R. M. ( 1994; ). Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect. J Virol 68, 7790–7799.
    [Google Scholar]
  19. Herrlinger, U., Kramm, C. M., Aboody-Guterman, K. S. & 9 other authors ( 1998; ). Pre-existing herpes simplex virus 1 (HSV-1) immunity decreases, but does not abolish, gene transfer to experimental brain tumors by a HSV-1 vector. Gene Ther 5, 809–819.[CrossRef]
    [Google Scholar]
  20. Hill, A., Jugovic, P., York, I., Russ, G., Bennink, J., Yewdell, J., Ploegh, H. & Johnson, D. ( 1995; ). Herpes simplex virus turns off the TAP to evade host immunity. Nature 375, 411–415.[CrossRef]
    [Google Scholar]
  21. Hocknell, P. K., Wiley, R. D., Wang, X., Evans, T. G., Bowers, W. J., Hanke, T., Federoff, H. J. & Dewhurst, S. ( 2002; ). Expression of human immunodeficiency virus type 1 gp120 from herpes simplex virus type 1-derived amplicons results in potent, specific, and durable cellular and humoral immune responses. J Virol 76, 5565–5580.[CrossRef]
    [Google Scholar]
  22. Hogquist, K. A., Jameson, S. C., Heath, W. R., Howard, J. L., Bevan, M. J. & Carbone, F. R. ( 1994; ). T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27.[CrossRef]
    [Google Scholar]
  23. Huard, J., Goins, W. F. & Glorioso, J. C. ( 1995; ). Herpes simplex virus type 1 vector mediated gene transfer to muscle. Gene Ther 2, 385–392.
    [Google Scholar]
  24. Johnson, D. C. & Feenstra, V. ( 1987; ). Identification of a novel herpes simplex virus type 1-induced glycoprotein which complexes with gE and binds immunoglobulin. J Virol 61, 2208–2216.
    [Google Scholar]
  25. Kadowaki, N., Antonenko, S., Lau, J. Y. & Liu, Y. J. ( 2000; ). Natural interferon alpha/beta-producing cells link innate and adaptive immunity. J Exp Med 192, 219–226.[CrossRef]
    [Google Scholar]
  26. Keadle, T. L., Morrison, L. A., Morris, J. L., Pepose, J. S. & Stuart, P. M. ( 2002; ). Therapeutic immunization with a virion host shutoff-defective, replication-incompetent herpes simplex virus type 1 strain limits recurrent herpetic ocular infection. J Virol 76, 3615–3625.[CrossRef]
    [Google Scholar]
  27. Kleindienst, P., Wiethe, C., Lutz, M. B. & Brocker, T. ( 2005; ). Simultaneous induction of CD4 T cell tolerance and CD8 T cell immunity by semimature dendritic cells. J Immunol 174, 3941–3947.[CrossRef]
    [Google Scholar]
  28. Kodukula, P., Liu, T., Rooijen, N. V., Jager, M. J. & Hendricks, R. L. ( 1999; ). Macrophage control of herpes simplex virus type 1 replication in the peripheral nervous system. J Immunol 162, 2895–2905.
    [Google Scholar]
  29. Koelle, D. M. & Corey, L. ( 2003; ). Recent progress in herpes simplex virus immunobiology and vaccine research. Clin Microbiol Rev 16, 96–113.[CrossRef]
    [Google Scholar]
  30. Krisky, D. M., Wolfe, D., Goins, W. F., Marconi, P. C., Ramakrishnan, R., Mata, M., Rouse, R. J., Fink, D. J. & Glorioso, J. C. ( 1998; ). Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Ther 5, 1593–1603.[CrossRef]
    [Google Scholar]
  31. Kurts, C., Miller, J. F., Subramaniam, R. M., Carbone, F. R. & Heath, W. R. ( 1998; ). Major histocompatibility complex class I-restricted cross-presentation is biased towards high dose antigens and those released during cellular destruction. J Exp Med 188, 409–414.[CrossRef]
    [Google Scholar]
  32. Kurts, C., Sutherland, R. M., Davey, G., Li, M., Lew, A. M., Blanas, E., Carbone, F. R., Miller, J. F. & Heath, W. R. ( 1999; ). CD8 T cell ignorance or tolerance to islet antigens depends on antigen dose. Proc Natl Acad Sci U S A 96, 12703–12707.[CrossRef]
    [Google Scholar]
  33. Lauterbach, H., Kerksiek, K. M., Busch, D. H. & 7 other authors ( 2004; ). Protection from bacterial infection by a single vaccination with replication-deficient mutant herpes simplex virus type 1. J Virol 78, 4020–4028.[CrossRef]
    [Google Scholar]
  34. Li, Z., Dullmann, J., Schiedlmeier, B. & 12 other authors ( 2002; ). Murine leukemia induced by retroviral gene marking. Science 296, 497.[CrossRef]
    [Google Scholar]
  35. Littler, E., Purifoy, D., Minson, A. & Powell, K. L. ( 1983; ). Herpes simplex virus non-structural proteins. III. Function of the major DNA-binding protein. J Gen Virol 64, 983–995.[CrossRef]
    [Google Scholar]
  36. Mandl, S., Hix, L. & Andino, R. ( 2001; ). Preexisting immunity to poliovirus does not impair the efficacy of recombinant poliovirus vaccine vectors. J Virol 75, 622–627.[CrossRef]
    [Google Scholar]
  37. Melchjorsen, J., Pedersen, F. S., Mogensen, S. C. & Paludan, S. R. ( 2002; ). Herpes simplex virus selectively induces expression of the CC chemokine RANTES/CCL5 in macrophages through a mechanism dependent on PKR and ICP0. J Virol 76, 2780–2788.[CrossRef]
    [Google Scholar]
  38. Mellerick, D. M. & Fraser, N. W. ( 1987; ). Physical state of the latent herpes simplex virus genome in a mouse model system: evidence suggesting an episomal state. Virology 158, 265–275.[CrossRef]
    [Google Scholar]
  39. Mikloska, Z. & Cunningham, A. L. ( 1998; ). Herpes simplex virus type 1 glycoproteins gB, gC and gD are major targets for CD4 T-lymphocyte cytotoxicity in HLA-DR expressing human epidermal keratinocytes. J Gen Virol 79, 353–361.
    [Google Scholar]
  40. Mikloska, Z., Kesson, A. M., Penfold, M. E. & Cunningham, A. L. ( 1996; ). Herpes simplex virus protein targets for CD4 and CD8 lymphocyte cytotoxicity in cultured epidermal keratinocytes treated with interferon-gamma. J Infect Dis 173, 7–17.[CrossRef]
    [Google Scholar]
  41. Mikloska, Z., Bosnjak, L. & Cunningham, A. L. ( 2001; ). Immature monocyte-derived dendritic cells are productively infected with herpes simplex virus type 1. J Virol 75, 5958–5964.[CrossRef]
    [Google Scholar]
  42. Moriuchi, S., Krisky, D. M., Marconi, P. C., Tamura, M., Shimizu, K., Yoshimine, T., Cohen, J. B. & Glorioso, J. C. ( 2000; ). HSV vector cytotoxicity is inversely correlated with effective TK/GCV suicide gene therapy of rat gliosarcoma. Gene Ther 7, 1483–1490.[CrossRef]
    [Google Scholar]
  43. Morrison, L. A. & Knipe, D. M. ( 1994; ). Immunization with replication-defective mutants of herpes simplex virus type 1: sites of immune intervention in pathogenesis of challenge virus infection. J Virol 68, 689–696.
    [Google Scholar]
  44. Morrison, L. A. & Knipe, D. M. ( 1996; ). Mechanisms of immunization with a replication-defective mutant of herpes simplex virus 1. Virology 220, 402–413.[CrossRef]
    [Google Scholar]
  45. Morrison, L. A. & Knipe, D. M. ( 1997; ). Contributions of antibody and T cell subsets to protection elicited by immunization with a replication-defective mutant of herpes simplex virus type 1. Virology 239, 315–326.[CrossRef]
    [Google Scholar]
  46. Murphy, C. G., Lucas, W. T., Means, R. E. & 7 other authors ( 2000; ). Vaccine protection against simian immunodeficiency virus by recombinant strains of herpes simplex virus. J Virol 74, 7745–7754.[CrossRef]
    [Google Scholar]
  47. Nagashunmugam, T., Lubinski, J., Wang, L., Goldstein, L. T., Weeks, B. S., Sundaresan, P., Kang, E. H., Dubin, G. & Friedman, H. M. ( 1998; ). In vivo immune evasion mediated by the herpes simplex virus type 1 immunoglobulin G Fc receptor. J Virol 72, 5351–5359.
    [Google Scholar]
  48. Neumann, J., Eis-Hubinger, A. M. & Koch, N. ( 2003; ). Herpes simplex virus type 1 targets the MHC class II processing pathway for immune evasion. J Immunol 171, 3075–3083.[CrossRef]
    [Google Scholar]
  49. Nopora, A. & Brocker, T. ( 2002; ). Bcl-2 controls dendritic cell longevity in vivo. J Immunol 169, 3006–3014.[CrossRef]
    [Google Scholar]
  50. Ogg, P. D., McDonell, P. J., Ryckman, B. J., Knudson, C. M. & Roller, R. J. ( 2004; ). The HSV-1 Us3 protein kinase is sufficient to block apoptosis induced by overexpression of a variety of Bcl-2 family members. Virology 319, 212–224.[CrossRef]
    [Google Scholar]
  51. Palmer, J. A., Branston, R. H., Lilley, C. E., Robinson, M. J., Groutsi, F., Smith, J., Latchman, D. S. & Coffin, R. S. ( 2000; ). Development and optimization of herpes simplex virus vectors for multiple long-term gene delivery to the peripheral nervous system. J Virol 74, 5604–5618.[CrossRef]
    [Google Scholar]
  52. Papp, Z., Babiuk, L. A. & Baca-Estrada, M. E. ( 1999; ). The effect of pre-existing adenovirus-specific immunity on immune responses induced by recombinant adenovirus expressing glycoprotein D of bovine herpesvirus type 1. Vaccine 17, 933–943.[CrossRef]
    [Google Scholar]
  53. Parr, M. J., Wen, P. Y., Schaub, M., Khoury, S. J., Sayegh, M. H. & Fine, H. A. ( 1998; ). Immune parameters affecting adenoviral vector gene therapy in the brain. J Neurovirol 4, 194–203.[CrossRef]
    [Google Scholar]
  54. Pollara, G., Speidel, K., Samady, L., Rajpopat, M., McGrath, Y., Ledermann, J., Coffin, R. S., Katz, D. R. & Chain, B. ( 2003; ). Herpes simplex virus infection of dendritic cells: balance among activation, inhibition, and immunity. J Infect Dis 187, 165–178.[CrossRef]
    [Google Scholar]
  55. Pushko, P., Parker, M., Ludwig, G. V., Davis, N. L., Johnston, R. E. & Smith, J. F. ( 1997; ). Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239, 389–401.[CrossRef]
    [Google Scholar]
  56. Samady, L., Costigliola, E., MacCormac, L. & 7 other authors ( 2003; ). Deletion of the virion host shutoff protein (vhs) from herpes simplex virus (HSV) relieves the viral block to dendritic cell activation: potential of vhs-HSV vectors for dendritic cell-mediated immunotherapy. J Virol 77, 3768–3776.[CrossRef]
    [Google Scholar]
  57. Schulick, A. H., Vassalli, G., Dunn, P. F., Dong, G., Rade, J. J., Zamarron, C. & Dichek, D. A. ( 1997; ). Established immunity precludes adenovirus-mediated gene transfer in rat carotid arteries. Potential for immunosuppression and vector engineering to overcome barriers of immunity. J Clin Invest 99, 209–219.[CrossRef]
    [Google Scholar]
  58. Siegal, F. P., Kadowaki, N., Shodell, M., Fitzgerald-Bocarsly, P. A., Shah, K., Ho, S., Antonenko, S. & Liu, Y. J. ( 1999; ). The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837.[CrossRef]
    [Google Scholar]
  59. Sloan, D. D., Zahariadis, G., Posavad, C. M., Pate, N. T., Kussick, S. J. & Jerome, K. R. ( 2003; ). CTL are inactivated by herpes simplex virus-infected cells expressing a viral protein kinase. J Immunol 171, 6733–6741.[CrossRef]
    [Google Scholar]
  60. Stanberry, L. R., Cunningham, A. L., Mindel, A., Scott, L. L., Spruance, S. L., Aoki, F. Y. & Lacey, C. J. ( 2000; ). Prospects for control of herpes simplex virus disease through immunization. Clin Infect Dis 30, 549–566.[CrossRef]
    [Google Scholar]
  61. Thomas, C. E., Ehrhardt, A. & Kay, M. A. ( 2003; ). Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4, 346–358.[CrossRef]
    [Google Scholar]
  62. Wade-Martins, R., Saeki, Y. & Antonio Chiocca, E. ( 2003; ). Infectious delivery of a 135-kb LDLR genomic locus leads to regulated complementation of low-density lipoprotein receptor deficiency in human cells. Mol Ther 7, 604–612.[CrossRef]
    [Google Scholar]
  63. Wallace, M. E., Keating, R., Heath, W. R. & Carbone, F. R. ( 1999; ). The cytotoxic T-cell response to herpes simplex virus type 1 infection of C57BL/6 mice is almost entirely directed against a single immunodominant determinant. J Virol 73, 7619–7626.
    [Google Scholar]
  64. Wang, X., Wiley, R. D., Evans, T. G., Bowers, W. J., Federoff, H. J. & Dewhurst, S. ( 2003; ). Cellular immune responses to helper-free HSV-1 amplicon particles encoding HIV-1 gp120 are enhanced by DNA priming. Vaccine 21, 2288–2297.[CrossRef]
    [Google Scholar]
  65. Wu, C. A., Nelson, N. J., McGeoch, D. J. & Challberg, M. D. ( 1988; ). Identification of herpes simplex virus type 1 genes required for origin-dependent DNA synthesis. J Virol 62, 435–443.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81104-0
Loading
/content/journal/jgv/10.1099/vir.0.81104-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error