1887

Abstract

The complete nucleotide sequence of the genomic RNA of the new virus Nemesia ring necrosis virus (NeRNV), which is widespread in various ornamental plant species belonging to the and , has been determined. Based on its gene content, the folding properties of its 5′-untranslated region and translation experiments, NeRNV RNA is a typical tymovirus RNA. Its 3′ end, however, differs greatly from those of the valine-specific tymoviral RNAs that have been analysed previously. It can be folded into an upstream pseudoknot domain and a histidine-specific tRNA-like structure, a combination that, so far, has been found only in tobamoviral RNAs. The identity elements found in NeRNV RNA for recognition by yeast histidyl-tRNA synthetase are more similar to those of yeast tRNA than the ones found in tobacco mosaic virus RNA. As a result NeRNV RNA can be charged with histidine even more efficiently than tobacco mosaic virus RNA.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80916-0
2005-06-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/6/vir861827.html?itemId=/content/journal/jgv/10.1099/vir.0.80916-0&mimeType=html&fmt=ahah

References

  1. Barends, S., Bink, H. H. J., van den Worm, S. H. E., Pleij, C. W. A. & Kraal, B. ( 2003; ). Entrapping ribosomes for viral translation: tRNA mimicry as a molecular Trojan horse. Cell 112, 123–129.[CrossRef]
    [Google Scholar]
  2. Barends, S., Rudinger-Thirion, J., Florentz, C., Giegé, R., Pleij, C. W. A. & Kraal, B. ( 2004; ). tRNA-like structure regulates translation of Brome mosaic virus RNA. J Virol 78, 4003–4010.[CrossRef]
    [Google Scholar]
  3. Bink, H. H. J., Hellendoorn, K., van der Meulen, J. & Pleij, C. W. A. ( 2002; ). Protonation of non-Watson–Crick base pairs and encapsidation of turnip yellow mosaic virus RNA. Proc Natl Acad Sci U S A 99, 13465–13470.[CrossRef]
    [Google Scholar]
  4. Bodaghi, S., Ngon A Yassi, M. & Dodds, J. A. ( 2000; ). Heterogeneity in the 3′-terminal untranslated region of tobacco mild green mosaic tobamoviruses from Nicotiana glauca resulting in variants with three or six pseudoknots. J Gen Virol 81, 577–586.
    [Google Scholar]
  5. Bozarth, C. S., Weiland, J. J. & Dreher, T. W. ( 1992; ). Expression of ORF-69 of turnip yellow mosaic virus is necessary for viral spread in plants. Virology 187, 124–130.[CrossRef]
    [Google Scholar]
  6. Bransom, K. L. & Dreher, T. W. ( 1994; ). Identification of the essential cysteine and histidine residues of the turnip yellow mosaic virus protease. Virology 198, 148–154.[CrossRef]
    [Google Scholar]
  7. Bransom, K. L., Wallace, S. E. & Dreher, T. W. ( 1996; ). Identification of the cleavage site recognized by the turnip yellow mosaic virus protease. Virology 217, 404–406.[CrossRef]
    [Google Scholar]
  8. Chen, J., Li, W. X., Xie, D., Peng, J. R. & Ding, S. W. ( 2004; ). Viral virulence protein suppresses RNA silencing-mediated defense but upregulates the role of microRNA in host gene expression. Plant Cell 16, 1302–1313.[CrossRef]
    [Google Scholar]
  9. Coutts, R. H. A. & Livieratos, I. C. ( 2003; ). A rapid method for sequencing the 5′- and 3′-termini of dsRNA viral templates using RLM-Race. J Phytopathol 151, 525–527.[CrossRef]
    [Google Scholar]
  10. Devereux, J., Haeberli, P. & Smithies, O. ( 1984; ). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387–395.[CrossRef]
    [Google Scholar]
  11. Dunn, D. B. & Hitchborn, J. H. ( 1965; ). The use of bentonite in the purification of plant viruses. Virology 25, 171–192.[CrossRef]
    [Google Scholar]
  12. Felden, B., Florentz, C., Giegé, R. & Westhof, E. ( 1996; ). A central pseudoknotted three-way junction imposes tRNA-like mimicry and the orientation of three 5′ upstream pseudoknots in the 3′ terminus of tobacco mosaic virus RNA. RNA 2, 201–212.
    [Google Scholar]
  13. Filichkin, S. A., Bransom, K. L., Goodwin, J. B. & Dreher, T. W. ( 2000; ). The infectivities of turnip yellow mosaic virus genomes with altered tRNA mimicry are not dependent on compensating mutations in the viral replication protein. J Virol 74, 8368–8375.[CrossRef]
    [Google Scholar]
  14. Goodwin, J. B., Skuzeski, J. M. & Dreher, T. W. ( 1997; ). Characterization of chimeric turnip yellow mosaic virus genomes that are infectious in the absence of aminoacylation. Virology 230, 113–124.[CrossRef]
    [Google Scholar]
  15. Gultyaev, A. P., van Batenburg, E. & Pleij, C. W. A. ( 1994; ). Similarities between the secondary structure of satellite tobacco mosaic virus and tobamovirus RNAs. J Gen Virol 75, 2851–2856.[CrossRef]
    [Google Scholar]
  16. Gultyaev, A. P., van Batenburg, F. H. D. & Pleij, C. W. A. ( 1995; ). The computer simulation of RNA folding pathways using a genetic algorithm. J Mol Biol 250, 37–51.[CrossRef]
    [Google Scholar]
  17. Hellendoorn, K., Mat, A. W., Gultyaev, A. P. & Pleij, C. W. A. ( 1996a; ). Secondary structure model of the coat protein gene of turnip yellow mosaic virus RNA: long, C-rich, single-stranded regions. Virology 224, 43–54.[CrossRef]
    [Google Scholar]
  18. Hellendoorn, K., Michiels, P. J., Buitenhuis, R. & Pleij, C. W. A. ( 1996b; ). Protonatable hairpins are conserved in the 5′-untranslated region of tymovirus RNAs. Nucleic Acids Res 24, 4910–4917.[CrossRef]
    [Google Scholar]
  19. Hellendoorn, K., Verlaan, P. W. & Pleij, C. W. A. ( 1997; ). A functional role for the conserved protonatable hairpins in the 5′ untranslated region of turnip yellow mosaic virus RNA. J Virol 71, 8774–8779.
    [Google Scholar]
  20. Kadare, G., Rozanov, M. & Haenni, A.-L. ( 1995; ). Expression of the turnip yellow mosaic virus proteinase in Escherichia coli and determination of the cleavage site within the 206 kDa protein. J Gen Virol 76, 2853–2857.[CrossRef]
    [Google Scholar]
  21. Kashiwazaki, S., Scott, K. P., Reavy, B. & Harrison, B. D. ( 1995; ). Sequence analysis and gene content of potato mop top virus RNA 3: further evidence of heterogeneity in the genome organization of furoviruses. Virology 206, 701–706.[CrossRef]
    [Google Scholar]
  22. Koenig, R. & Lesemann, D.-E. ( 2000; ). Ein Tymovirus aus den Zierpflanzen Diascia und Nemesia - wie zuverlässig ist die Serologie bei der Identifizierung von Pflanzenviren? Phytomedizin 30, 16–17.
    [Google Scholar]
  23. Koenig, R., Pleij, C. W. A., Beier, C. & Commandeur, U. ( 1998; ). Genome properties of beet virus Q, a new furo-like virus from sugarbeet, determined from unpurified virus. J Gen Virol 79, 2027–2036.
    [Google Scholar]
  24. Koenig, R., Pleij, C. W. A. & Huth, W. ( 1999; ). Molecular characterization of a new furovirus mainly infecting rye. Arch Virol 144, 2125–2140.[CrossRef]
    [Google Scholar]
  25. Koenig, R., Pleij, C. W. A. & Büttner, G. ( 2000; ). Structure and variability of the 3′ end of RNA 3 of beet soil-borne pomovirus – a virus with uncertain pathogenic effects. Arch Virol 145, 1173–1181.[CrossRef]
    [Google Scholar]
  26. Koenig, R., Pleij, C. W. A., Loss, S., Burgermeister, W., Aust, H. & Schiemann, J. ( 2004; ). Molecular characterisation of potexviruses isolated from three different genera in the family Cactaceae. Arch Virol 149, 903–914.[CrossRef]
    [Google Scholar]
  27. Koenig, R., Pleij, C. W. A., Lesemann, D.-E., Loss, S. & Vetten, H. J. ( 2005; ). Molecular characterization of Anagyris vein yellowing virus, Plantago mottle virus and Scrophularia mottle virus – comparison of various approaches for tymovirus classification. Arch Virol (in press).
    [Google Scholar]
  28. Koonin, E. V. & Dolja, V. V. ( 1993; ). Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28, 375–430.[CrossRef]
    [Google Scholar]
  29. Mans, R. M., Pleij, C. W. A. & Bosch, L. ( 1991; ). tRNA-like structures. Structure, function and evolutionary significance. Eur J Biochem 201, 303–324.[CrossRef]
    [Google Scholar]
  30. Meshi, T., Ohno, T., Iba, H. & Okada, Y. ( 1981; ). Nucleotide sequence of a cloned cDNA copy of TMV (cowpea strain) RNA, including the assembly origin, the coat protein cistron, and the 3′ non-coding region. Mol Gen Genet 184, 20–25.[CrossRef]
    [Google Scholar]
  31. Nameki, N., Asahara, H., Shimizu, M., Okada, N. & Himeno, H. ( 1995; ). Identity elements of Saccharomyces cerevisiae tRNAHis. Nucleic Acids Res 23, 389–394.[CrossRef]
    [Google Scholar]
  32. Pleij, C. W. A., Abrahams, J. P., van Belkum, A., Rietveld, K. & Bosch, L. ( 1987; ). The spatial folding of the 3′ noncoding region of aminoacylatable plant viral RNAs. In Positive Strand RNA Viruses, UCLA Symposia on Molecular and Cellular Biology, New Series, vol. 54, pp. 299–316. Edited by M. A. Brinton & R. Rueckert. New York: Alan Riss.
  33. Rietveld, K., van Poelgeest, R., Pleij, C. W. A., van Boom, J. H. & Bosch, L. ( 1982; ). The tRNA-like structure at the 3′ terminus of turnip yellow mosaic virus RNA. Differences and similarities with canonical tRNA. Nucleic Acids Res 10, 1929–1946.[CrossRef]
    [Google Scholar]
  34. Rietveld, K., Linschooten, K., Pleij, C. W. A. & Bosch, L. ( 1984; ). The three-dimensional folding of the tRNA-like structure of tobacco mosaic virus RNA. A new building principle applied twice. EMBO J 3, 2613–2619.
    [Google Scholar]
  35. Rudinger, J., Florentz, C. & Giegé, R. ( 1994; ). Histidylation by yeast HisRS of tRNA or tRNA-like structure relies on residues −1 and 73 but is dependent on the RNA context. Nucleic Acids Res 22, 5031–5037.[CrossRef]
    [Google Scholar]
  36. Ruiz del Pino, M., Moreno, A., Garcia de Lacoba, M., Castillo-Lluva, S., Gilardi, P., Serra, M. T. & Garcia-Luque, I. ( 2003; ). Biological and molecular characterization of P101 isolate, a tobamoviral pepper strain from Bulgaria. Arch Virol 148, 2115–2135.[CrossRef]
    [Google Scholar]
  37. Seigner, L. ( 2003; ). Schäden an Zierpflanzen durch INSV und Nemesiavirus. Das Magazin für Zierpflanzenbau 19, 47–49.
    [Google Scholar]
  38. Shimamoto, I., Sonoda, S., Vazquez, P., Minaka, N. & Nishiguchi, M. ( 1998; ). Nucleotide sequence analysis of the 3′ terminal region of a wasabi strain of crucifer tobamovirus genomic RNA: subgrouping of crucifer tobamoviruses. Arch Virol 143, 1801–1813.[CrossRef]
    [Google Scholar]
  39. Shirako, Y. & Wilson, T. M. A. ( 1993; ). Complete nucleotide sequence and organization of the bipartite RNA genome of soil-borne wheat mosaic virus. Virology 195, 16–32.[CrossRef]
    [Google Scholar]
  40. Skelton, A. L., Jarvis, B., Koenig, R., Lesemann, D.-E. & Mumford, R. A. ( 2004; ). The isolation and identification of a tymovirus from Nemesia in the UK. Plant Pathol 53, 798.[CrossRef]
    [Google Scholar]
  41. Skuzeski, J. M., Bozarth, C. S. & Dreher, T. W. ( 1996; ). The turnip yellow mosaic virus tRNA-like structure cannot be replaced by generic tRNA-like elements or by heterologous 3′ untranslated regions known to enhance mRNA expression and stability. J Virol 70, 2107–2115.
    [Google Scholar]
  42. van Belkum, A., Abrahams, J. P., Pleij, C. W. A. & Bosch, L. ( 1985; ). Five pseudoknots are present at the 204 nucleotides long 3′ noncoding region of tobacco mosaic virus RNA. Nucleic Acids Res 13, 7673–7686.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80916-0
Loading
/content/journal/jgv/10.1099/vir.0.80916-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error