1887

Abstract

Herpes simplex virus type 1 (HSV-1) is able to establish latency in infected individuals. In order to characterize potential new immune-escape mechanisms, mature dendritic cells (DCs) were infected with HSV-1 and total cellular RNA was isolated from infected and mock-infected populations at different time points. RNA profiling on Affymetrix Human Genome U133A arrays demonstrated a dramatic downregulation of the migration-mediating surface molecules CCR7 and CXCR4, an observation that was further confirmed by RT-PCR and fluorescence-activated cell sorting analyses. Furthermore, migration assays revealed that, upon infection of mature DCs, CCR7- and CXCR4-mediated migration towards the corresponding CCL19 and CXCL12 chemokine gradients was strongly reduced. It is noteworthy that the infection of immature DCs with HSV-1 prior to maturation led to a failure of CCR7 and CXCR4 upregulation during DC maturation and, as a consequence, also induced a block in their migratory capacity. Additional migration assays with a Δvhs mutant virus lacking the virion host shutoff () gene, which is known to degrade cellular mRNAs, suggested a vhs-independent mechanism. These results indicate that HSV-1-infected mature DCs are limited in their capacity to migrate to secondary lymphoid organs, the areas of antigen presentation and T-cell stimulation, thus inhibiting an antiviral immune response. This represents a novel, previously unrecognized mechanism for HSV-1 to escape the human immune system.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80852-0
2005-06-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/6/vir861645.html?itemId=/content/journal/jgv/10.1099/vir.0.80852-0&mimeType=html&fmt=ahah

References

  1. Ahn, K., Meyer, T. H., Uebel, S., Sempe, P., Djaballah, H., Yang, Y., Peterson, P. A., Fruh, K. & Tampe, R. ( 1996; ). Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. EMBO J 15, 3247–3255.
    [Google Scholar]
  2. Aliprantis, A. O., Yang, R.-B., Mark, M. R., Suggett, S., Devaux, B., Radolf, J. D., Klimpel, G. R., Godowski, P. & Zychlinsky, A. ( 1999; ). Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 285, 736–739.[CrossRef]
    [Google Scholar]
  3. Banchereau, J. & Steinman, R. M. ( 1998; ). Dendritic cells and the control of immunity. Nature 392, 245–252.[CrossRef]
    [Google Scholar]
  4. Becker, Y. ( 2002; ). Herpes simplex virus evolved to use the human defense mechanisms to establish a lifelong infection in neurons – a review and hypothesis. Virus Genes 24, 187–196.[CrossRef]
    [Google Scholar]
  5. Becker, Y. ( 2003; ). Immunological and regulatory functions of uninfected and virus infected immature and mature subtypes of dendritic cells – a review. Virus Genes 26, 119–130.[CrossRef]
    [Google Scholar]
  6. Björck, P. ( 2004; ). Dendritic cells exposed to herpes simplex virus in vivo do not produce IFN-α after rechallenge with virus in vitro and exhibit decreased T cell alloreactivity. J Immunol 172, 5396–5404.[CrossRef]
    [Google Scholar]
  7. Brightbill, H. D., Libraty, D. H., Krutzik, S. R. & 11 other authors ( 1999; ). Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 285, 732–736.[CrossRef]
    [Google Scholar]
  8. Cartier, A., Komai, T. & Masucci, M. G. ( 2003; ). The Us3 protein kinase of herpes simplex virus 1 blocks apoptosis and induces phosphorylation of the Bcl-2 family member Bad. Exp Cell Res 291, 242–250.[CrossRef]
    [Google Scholar]
  9. Cavanagh, L. L. & Von Andrian, U. H. ( 2002; ). Travellers in many guises: the origins and destinations of dendritic cells. Immunol Cell Biol 80, 448–462.[CrossRef]
    [Google Scholar]
  10. Cebulla, C. M., Miller, D. M., Zhang, Y., Rahill, B. M., Zimmerman, P., Robinson, J. M. & Sedmak, D. D. ( 2002; ). Human cytomegalovirus disrupts constitutive MHC class II expression. J Immunol 169, 167–176.[CrossRef]
    [Google Scholar]
  11. Cella, M., Salio, M., Sakakibara, Y., Langen, H., Julkunen, I. & Lanzavecchia, A. ( 1999; ). Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med 189, 821–829.[CrossRef]
    [Google Scholar]
  12. Coffin, R. S., Maclean, A. R., Latchman, D. S. & Brown, S. M. ( 1996; ). Gene delivery to the central and peripheral nervous systems of mice using HSV1 ICP34.5 deletion mutant vectors. Gene Ther 3, 886–891.
    [Google Scholar]
  13. Daheshia, M., Feldman, L. T. & Rouse, B. T. ( 1998; ). Herpes simplex virus latency and the immune response. Curr Opin Microbiol 1, 430–435.[CrossRef]
    [Google Scholar]
  14. Delgado, E., Finkel, V., Baggiolini, M., Mackay, C. R., Steinman, R. M. & Granelli-Piperno, A. ( 1998; ). Mature dendritic cells respond to SDF-1, but not to several beta-chemokines. Immunobiology 198, 490–500.[CrossRef]
    [Google Scholar]
  15. Dwyer, D. E. & Cunningham, A. L. ( 2002; ). 10: herpes simplex and varicella-zoster virus infections. Med J Aust 177, 267–273.
    [Google Scholar]
  16. Engelmayer, J., Larsson, M., Subklewe, M., Chahroudi, A., Cox, W. I., Steinman, R. M. & Bhardwaj, N. ( 1999; ). Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J Immunol 163, 6762–6768.
    [Google Scholar]
  17. Everly, D. N., Jr, Feng, P., Mian, I. S. & Read, G. S. ( 2002; ). mRNA degradation by the virion host shutoff (Vhs) protein of herpes simplex virus: genetic and biochemical evidence that Vhs is a nuclease. J Virol 76, 8560–8571.[CrossRef]
    [Google Scholar]
  18. Förster, R., Schubel, A., Breitfeld, D., Kremmer, E., Renner-Müller, I., Wolf, E. & Lipp, M. ( 1999; ). CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33.[CrossRef]
    [Google Scholar]
  19. Fugier-Vivier, I., Servet-Delprat, C., Rivailler, P., Rissoan, M.-C., Liu, Y.-J. & Rabourdin-Combe, C. ( 1997; ). Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med 186, 813–823.[CrossRef]
    [Google Scholar]
  20. Galvan, V. & Roizman, B. ( 1998; ). Herpes simplex virus 1 induces and blocks apoptosis at multiple steps during infection and protects cells from exogenous inducers in a cell-type-dependent manner. Proc Natl Acad Sci U S A 95, 3931–3936.[CrossRef]
    [Google Scholar]
  21. Goldsmith, K., Chen, W., Johnson, D. C. & Hendricks, R. L. ( 1998; ). Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell response. J Exp Med 187, 341–348.[CrossRef]
    [Google Scholar]
  22. Gunn, M. D. ( 2003; ). Chemokine mediated control of dendritic cell migration and function. Semin Immunol 15, 271–276.[CrossRef]
    [Google Scholar]
  23. Gunn, M. D., Kyuwa, S., Tam, C., Kakiuchi, T., Matsuzawa, A., Williams, L. T. & Nakano, H. ( 1999; ). Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 189, 451–460.[CrossRef]
    [Google Scholar]
  24. Hagglund, R. & Roizman, B. ( 2004; ). Role of ICP0 in the strategy of conquest of the host cell by herpes simplex virus 1. J Virol 78, 2169–2178.[CrossRef]
    [Google Scholar]
  25. Harris, N. L. & Ronchese, F. ( 1999; ). The role of B7 costimulation in T-cell immunity. Immunol Cell Biol 77, 304–311.[CrossRef]
    [Google Scholar]
  26. Hengel, H., Lindner, M., Wagner, H. & Heeg, K. ( 1987; ). Frequency of herpes simplex virus-specific murine cytotoxic T lymphocyte precursors in mitogen- and antigen-driven primary in vitro T cell responses. J Immunol 139, 4196–4202.
    [Google Scholar]
  27. Hill, A., Jugovic, P., York, I., Russ, G., Bennink, J., Yewdell, J., Ploegh, H. & Johnson, D. ( 1995; ). Herpes simplex virus turns off the TAP to evade host immunity. Nature 375, 411–415.[CrossRef]
    [Google Scholar]
  28. Jenne, L., Hauser, C., Arrighi, J.-F., Saurat, J.-H. & Hügin, A. W. ( 2000; ). Poxvirus as a vector to transduce human dendritic cells for immunotherapy: abortive infection but reduced APC function. Gene Ther 7, 1575–1583.[CrossRef]
    [Google Scholar]
  29. Jenne, L., Thumann, P. & Steinkasserer, A. ( 2001; ). Interaction of large DNA viruses with dendritic cells. Immunobiology 204, 639–648.[CrossRef]
    [Google Scholar]
  30. Kast, W. M., Boog, C. J., Roep, B. O., Voordouw, A. C. & Melief, C. J. ( 1988; ). Failure or success in the restoration of virus-specific cytotoxic T lymphocyte response defects by dendritic cells. J Immunol 140, 3186–3193.
    [Google Scholar]
  31. Kellermann, S.-A., Hudak, S., Oldham, E. R., Liu, Y.-J. & McEvoy, L. M. ( 1999; ). The CC chemokine receptor-7 ligands 6Ckine and macrophage inflammatory protein-3β are potent chemoattractants for in vitro- and in vivo-derived dendritic cells. J Immunol 162, 3859–3864.
    [Google Scholar]
  32. Knight, S. C. & Patterson, S. ( 1997; ). Bone marrow-derived dendritic cells, infection with human immunodeficiency virus, and immunopathology. Annu Rev Immunol 15, 593–615.[CrossRef]
    [Google Scholar]
  33. Kobelt, D., Lechmann, M. & Steinkasserer, A. ( 2003; ). The interaction between dendritic cells and herpes simplex virus-1. Curr Top Microbiol Immunol 276, 145–161.
    [Google Scholar]
  34. Kruse, M., Rosorius, O., Krätzer, F., Stelz, G., Kuhnt, C., Schuler, G., Hauber, J. & Steinkasserer, A. ( 2000; ). Mature dendritic cells infected with herpes simplex virus type 1 exhibit inhibited T-cell stimulatory capacity. J Virol 74, 7127–7136.[CrossRef]
    [Google Scholar]
  35. Liesegang, T. J. ( 2001; ). Herpes simplex virus epidemiology and ocular importance. Cornea 20, 1–13.[CrossRef]
    [Google Scholar]
  36. Lilley, C. E., Groutsi, F., Han, Z., Palmer, J. A., Anderson, P. N., Latchman, D. S. & Coffin, R. S. ( 2001; ). Multiple immediate-early gene-deficient herpes simplex virus vectors allowing efficient gene delivery to neurons in culture and widespread gene delivery to the central nervous system in vivo. J Virol 75, 4343–4356.[CrossRef]
    [Google Scholar]
  37. Lin, C.-L., Suri, R. M., Rahdon, R. A., Austyn, J. M. & Roake, J. A. ( 1998; ). Dendritic cell chemotaxis and transendothelial migration are induced by distinct chemokines and are regulated on maturation. Eur J Immunol 28, 4114–4122.[CrossRef]
    [Google Scholar]
  38. Ludewig, B., Ehl, S., Karrer, U., Odermatt, B., Hengartner, H. & Zinkernagel, R. M. ( 1998; ). Dendritic cells efficiently induce protective antiviral immunity. J Virol 72, 3812–3818.
    [Google Scholar]
  39. Mikloska, Z., Bosnjak, L. & Cunningham, A. L. ( 2001; ). Immature monocyte-derived dendritic cells are productively infected with herpes simplex virus type 1. J Virol 75, 5958–5964.[CrossRef]
    [Google Scholar]
  40. Mossman, K. L., Macgregor, P. F., Rozmus, J. J., Goryachev, A. B., Edwards, A. M. & Smiley, J. R. ( 2001; ). Herpes simplex virus triggers and then disarms a host antiviral response. J Virol 75, 750–758.[CrossRef]
    [Google Scholar]
  41. Moutaftsi, M., Brennan, P., Spector, S. A. & Tabi, Z. ( 2004; ). Impaired lymphoid chemokine-mediated migration due to a block on the chemokine receptor switch in human cytomegalovirus-infected dendritic cells. J Virol 78, 3046–3054.[CrossRef]
    [Google Scholar]
  42. Mueller, S. N., Jones, C. M., Smith, C. M., Heath, W. R. & Carbone, F. R. ( 2002; ). Rapid cytotoxic T lymphocyte activation occurs in the draining lymph nodes after cutaneous herpes simplex virus infection as a result of early antigen presentation and not the presence of virus. J Exp Med 195, 651–656.[CrossRef]
    [Google Scholar]
  43. Müller, D. B., Raftery, M. J., Kather, A., Giese, T. & Schönrich, G. ( 2004; ). Frontline: induction of apoptosis and modulation of c-FLIPL and p53 in immature dendritic cells infected with herpes simplex virus. Eur J Immunol 34, 941–951.[CrossRef]
    [Google Scholar]
  44. Nonacs, R., Humborg, C., Tam, J. P. & Steinman, R. M. ( 1992; ). Mechanisms of mouse spleen dendritic cell function in the generation of influenza-specific, cytolytic T lymphocytes. J Exp Med 176, 519–529.[CrossRef]
    [Google Scholar]
  45. Oroskar, A. A. & Read, G. S. ( 1989; ). Control of mRNA stability by the virion host shutoff function of herpes simplex virus. J Virol 63, 1897–1906.
    [Google Scholar]
  46. Parkinson, J. & Everett, R. D. ( 2000; ). Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 affect cellular structures and proteins. J Virol 74, 10006–10017.[CrossRef]
    [Google Scholar]
  47. Parlato, S., Santini, S. M., Lapenta, C. & 7 other authors ( 2001; ). Expression of CCR-7, MIP-3β, and Th-1 chemokines in type I IFN-induced monocyte-derived dendritic cells: importance for the rapid acquisition of potent migratory and functional activities. Blood 98, 3022–3029.[CrossRef]
    [Google Scholar]
  48. Pollara, G., Speidel, K., Samady, L., Rajpopat, M., McGrath, Y., Ledermann, J., Coffin, R. S., Katz, D. R. & Chain, B. ( 2003; ). Herpes simplex virus infection of dendritic cells: balance among activation, inhibition, and immunity. J Infect Dis 187, 165–178.[CrossRef]
    [Google Scholar]
  49. Pollara, G., Katz, D. R. & Chain, B. M. ( 2004a; ). The host response to herpes simplex virus infection. Curr Opin Infect Dis 17, 199–203.[CrossRef]
    [Google Scholar]
  50. Pollara, G., Jones, M., Handley, M. E., Rajpopat, M., Kwan, A., Coffin, R. S., Foster, G., Chain, B. & Katz, D. R. ( 2004b; ). Herpes simplex virus type-1-induced activation of myeloid dendritic cells: the roles of virus cell interaction and paracrine type I IFN secretion. J Immunol 173, 4108–4119.[CrossRef]
    [Google Scholar]
  51. Raftery, M. J., Schwab, M., Eibert, S. M., Samstag, Y., Walczak, H. & Schönrich, G. ( 2001; ). Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy. Immunity 15, 997–1009.[CrossRef]
    [Google Scholar]
  52. Ridge, J. P., Di Rosa, F. & Matzinger, P. ( 1998; ). A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478.[CrossRef]
    [Google Scholar]
  53. Salio, M., Cella, M., Suter, M. & Lanzavecchia, A. ( 1999; ). Inhibition of dendritic cell maturation by herpes simplex virus. Eur J Immunol 29, 3245–3253.[CrossRef]
    [Google Scholar]
  54. Sallusto, F., Schaerli, P., Loetscher, P., Schaniel, C., Lenig, D., Mackay, C. R., Qin, S. & Lanzavecchia, A. ( 1998; ). Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28, 2760–2769.[CrossRef]
    [Google Scholar]
  55. Samady, L., Costigliola, E., MacCormac, L. & 7 other authors ( 2003; ). Deletion of the virion host shutoff protein (vhs) from herpes simplex virus (HSV) relieves the viral block to dendritic cell activation: potential of vhs HSV vectors for dendritic cell-mediated immunotherapy. J Virol 77, 3768–3776.[CrossRef]
    [Google Scholar]
  56. Sénéchal, B., Boruchov, A. M., Reagan, J. L., Hart, D. N. J. & Young, J. W. ( 2004; ). Infection of mature monocyte-derived dendritic cells with human cytomegalovirus inhibits stimulation of T-cell proliferation via the release of soluble CD83. Blood 103, 4207–4215.[CrossRef]
    [Google Scholar]
  57. Shutt, D. C., Daniels, K. J., Carolan, E. J., Hill, A. C. & Soll, D. R. ( 2000; ). Changes in the motility, morphology, and F-actin architecture of human dendritic cells in an in vitro model of dendritic cell development. Cell Motil Cytoskeleton 46, 200–221.[CrossRef]
    [Google Scholar]
  58. Smiley, J. R. ( 2004; ). Herpes simplex virus virion host shutoff protein: immune evasion mediated by a viral RNase? J Virol 78, 1063–1068.[CrossRef]
    [Google Scholar]
  59. Sodeik, B., Ebersold, M. W. & Helenius, A. ( 1997; ). Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol 136, 1007–1021.[CrossRef]
    [Google Scholar]
  60. Sozzani, S., Allavena, P., D'Amico, G. & 7 other authors ( 1998; ). Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J Immunol 161, 1083–1086.
    [Google Scholar]
  61. Stewart, J. A., Reef, S. E., Pellett, P. E., Corey, L. & Whitley, R. J. ( 1995; ). Herpesvirus infections in persons infected with human immunodeficiency virus. Clin Infect Dis 21 (Suppl. 1), S114–S120.[CrossRef]
    [Google Scholar]
  62. Stumpf, T. H., Case, R., Shimeld, C., Easty, D. L. & Hill, T. J. ( 2002; ). Primary herpes simplex virus type 1 infection of the eye triggers similar immune responses in the cornea and the skin of the eyelids. J Gen Virol 83, 1579–1590.
    [Google Scholar]
  63. Taddeo, B., Esclatine, A. & Roizman, B. ( 2002; ). The patterns of accumulation of cellular RNAs in cells infected with a wild-type and a mutant herpes simplex virus 1 lacking the virion host shutoff gene. Proc Natl Acad Sci U S A 99, 17031–17036.[CrossRef]
    [Google Scholar]
  64. Toka, F. N., Gierynska, M. & Rouse, B. T. ( 2003; ). Codelivery of CCR7 ligands as molecular adjuvants enhances the protective immune response against herpes simplex virus type 1. J Virol 77, 12742–12752.[CrossRef]
    [Google Scholar]
  65. Trgovcich, J., Johnson, D. & Roizman, B. ( 2002; ). Cell surface major histocompatibility complex class II proteins are regulated by the products of the γ 134.5 and UL41 genes of herpes simplex virus 1. J Virol 76, 6974–6986.[CrossRef]
    [Google Scholar]
  66. Wehrle-Haller, B. & Imhof, B. A. ( 2003; ). Actin, microtubules and focal adhesion dynamics during cell migration. Int J Biochem Cell Biol 35, 39–50.[CrossRef]
    [Google Scholar]
  67. Whitley, R. J. & Roizman, B. ( 2001; ). Herpes simplex virus infections. Lancet 357, 1513–1518.[CrossRef]
    [Google Scholar]
  68. York, I. A., Roop, C., Andrews, D. W., Riddell, S. R., Graham, F. L. & Johnson, D. C. ( 1994; ). A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 77, 525–535.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80852-0
Loading
/content/journal/jgv/10.1099/vir.0.80852-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error