1887

Abstract

The aim of this study was to investigate Epstein–Barr virus (EBV)-related virus infection in pet dogs. The presence of antibodies to EBV antigens and EBV-related DNA was determined by Western blot analysis and PCR, respectively. Among 36 pet dogs examined for serum antibodies, 32 (88·9 %) were positive for EBV-specific thymidine kinase, 15 (41·7 %) for EBV-encoded DNA-binding protein and 10 (27·8 %) for EBV-specific DNA polymerase. A HI W fragment sequence encoding part of the EBV nuclear antigen leader protein was detected by PCR in corresponding leukocyte DNA samples. Among 21 dogs tested, 15 (71·4 %) were positive for the HI W fragment sequence. The specificity of the amplified DNA fragments was confirmed by DNA sequencing. Within the amplified region of the HI W fragment (241 bp), DNA sequences detected in 10 dogs had 99·2 % (two nucleotide variations), 99·6 % (one nucleotide variation) or 100 % identity to that of EBV. Furthermore, an EBV-encoded RNA signal was detected by hybridization in dog lymphocytes, as well as in bone-marrow sections, indicating a latent infection with EBV or an EBV-like virus. In conclusion, although the sample size was small, these results showed that a widespread EBV-related gammaherpesvirus could be detected in the peripheral blood and bone marrow of pet dogs. Although no evident zoonotic transmission was detected, further studies are imperative for disclosing the biological significance of this canine EBV-like virus, which may correlate with human disorders.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80792-0
2005-04-01
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/4/vir860899.html?itemId=/content/journal/jgv/10.1099/vir.0.80792-0&mimeType=html&fmt=ahah

References

  1. Baer R., Bankier A. T., Biggin M. D. & 9 other authors; 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310:207–211 [CrossRef]
    [Google Scholar]
  2. Brouillette J. A., Andrew J. R., Venta P. J. 2000; Estimate of nucleotide diversity in dogs with a pool-and-sequence method. Mamm Genome 11:1079–1086 [CrossRef]
    [Google Scholar]
  3. Callahan J., Pai S., Cotter M., Robertson E. S. 1999; Distinct patterns of viral antigen expression in Epstein–Barr virus and Kaposi's sarcoma-associated herpesvirus coinfected body-cavity-based lymphoma cell lines: potential switches in latent gene expression due to coinfection. Virology 262:18–30 [CrossRef]
    [Google Scholar]
  4. Cantaloube J. F., Piechaczyk M., Calender A., Lenoir G., Minty A., Carriere D., Fischer E., Poncelet P. 1990; Stable expression and function of EBV/C3d receptor following genomic transfection into murine fibroblast L cells. Eur J Immunol 20:409–416 [CrossRef]
    [Google Scholar]
  5. Chang Y.-G., Cesarman E., Pessin M. S., Lee F., Culpepper J., Knowles D. M., Moore P. S. 1994; Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266:1865–1869 [CrossRef]
    [Google Scholar]
  6. Cho Y., Ramer J., Rivailler P., Quink C., Garber R. L., Beier D. R., Wang F. 2001; An Epstein-Barr-related herpesvirus from marmoset lymphomas. Proc Natl Acad Sci U S A 98:1224–1229 [CrossRef]
    [Google Scholar]
  7. Chodosh J., Gan Y., Holder V. P., Sixbey J. W. 2000; Patterned entry and egress by Epstein–Barr virus in polarized CR2-positive epithelial cells. Virology 266:387–396 [CrossRef]
    [Google Scholar]
  8. Chow K.-C., Nacilla J. Q., Witzig T. E., Li C. Y. 1992; Is persistent polyclonal B lymphocytosis caused by Epstein-Barr virus? A study with polymerase chain reaction and in situ hybridization. Am J Hematol 41:270–275 [CrossRef]
    [Google Scholar]
  9. Chow K.-C., Ma J., Lin L. S. & 7 other authors; 1997; Serum responses to the combination of Epstein-Barr virus antigens from both latent and acute phases in nasopharyngeal carcinoma: complementary test of EBNA-1 with EA-D. Cancer Epidemiol Biomarkers Prev 6:363–368
    [Google Scholar]
  10. Davison A. J., Taylor P. 1987; Genetic relations between varicella-zoster virus and Epstein–Barr virus. J Gen Virol 68:1067–1079 [CrossRef]
    [Google Scholar]
  11. de Turenne-Tessier M., Ooka T., de The G., Daillie J. 1986; Characterization of an Epstein-Barr virus-induced thymidine kinase. J Virol 57:1105–1112
    [Google Scholar]
  12. Dillner J., Kallin B., Alexander H., Ernberg I., Uno M., Ono Y., Klein G., Lerner R. A. 1986; An Epstein–Barr virus (EBV)-determined nuclear antigen (EBNA5) partly encoded by the transformation-associated Bam WYH region of EBV DNA: preferential expression in lymphoblastoid cell lines. Proc Natl Acad Sci U S A 83:6641–6645 [CrossRef]
    [Google Scholar]
  13. Doherty P. C., Tripp R. A., Hamilton-Easton A. M., Cardin R. D., Woodland D. L., Blackman M. A. 1997; Tuning into immunological dissonance: an experimental model for infectious mononucleosis. Curr Opin Immunol 9:477–483 [CrossRef]
    [Google Scholar]
  14. Epstein M. A., Achong B. G., Barr Y. M. 1964; Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet i:702–703
    [Google Scholar]
  15. Epstein M. A., Hunt R. D., Rabin H. 1973; Pilot experiments with EB virus in owl monkeys ( Aotus trivagatus ). I. Reticuloproliferative disease in an inoculated animal. Int J Cancer 12:309–318 [CrossRef]
    [Google Scholar]
  16. Fingeroth J. D., Weis J. J., Tedder T. F., Strominger J. L., Biro P. A., Fearon D. T. 1984; Epstein–Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci U S A 81:4510–4514 [CrossRef]
    [Google Scholar]
  17. Fixman E. D., Hayward G. S., Hayward S. D. 1992; trans -acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol 66:5030–5039
    [Google Scholar]
  18. Flaño E., Woodland D. L., Blackman M. A. 2002; A mouse model for infectious mononucleosis. Immunol Res 25:201–218 [CrossRef]
    [Google Scholar]
  19. Gan Y. J., Sullivan J. L., Sixbey J. W. 1994; Detection of cell-free Epstein-Barr virus DNA in serum during acute infectious mononucleosis. J Infect Dis 170:436–439 [CrossRef]
    [Google Scholar]
  20. Hamada H., Petrino M. G., Kakunaga T. 1982; Molecular structure and evolutionary origin of human cardiac muscle actin gene. Proc Natl Acad Sci U S A 79:5901–5905 [CrossRef]
    [Google Scholar]
  21. Hayward S. D., Lazarowitz S. G., Hayward G. S. 1982; Organization of the Epstein-Barr virus DNA molecule. II. Fine mapping of the boundaries of the internal repeat cluster of B95-8 and identification of additional small tandem repeats adjacent to the HR-1 deletion. J Virol 43:201–212
    [Google Scholar]
  22. Heinzel S. S., Krysan P. J., Tran C. T., Calos M. P. 1991; Autonomous DNA replication in human cells is affected by the size and the source of the DNA. Mol Cell Biol 11:2263–2272
    [Google Scholar]
  23. Henle G., Henle W., Diehl V. 1968; Relation of Burkitt's tumor-associated herpes-type virus to infectious mononucleosis. Proc Natl Acad Sci U S A 59:94–101 [CrossRef]
    [Google Scholar]
  24. Henle G., Henle W., Clifford P. & 9 other authors; 1969; Antibodies to Epstein-Barr virus in Burkitt's lymphoma and control groups. J Natl Cancer Inst 43:1147–1157
    [Google Scholar]
  25. Henle W., Henle G., Ho H. C. & 7 other authors; 1970; Antibodies to Epstein-Barr virus in nasopharyngeal carcinoma, other head and neck neoplasms, and control groups. J Natl Cancer Inst 44:225–231
    [Google Scholar]
  26. Howe J. G., Steitz J. A. 1986; Localization of Epstein–Barr virus-encoded small RNAs by in situ hybridization. Proc Natl Acad Sci U S A 83:9006–9010 [CrossRef]
    [Google Scholar]
  27. Jenson H. B., Farrell P. J., Miller G. 1987; Sequences of the Epstein-Barr virus (EBV) large internal repeat from the center of a 16-kilobase-pair palindrome of EBV (P3HR-1) heterogeneous DNA. J Virol 61:1495–1506
    [Google Scholar]
  28. Jenson H. B., Ench Y., Zhang Y., Gao S.-J., Arrand J. R., Mackett M. 2002; Characterization of an Epstein–Barr virus-related gammaherpesvirus from common marmoset ( Callithrix jacchus . J Gen Virol 83:1621–1633
    [Google Scholar]
  29. Jobes D. V., Chima S. C., Ryschkewitsch C. F., Stoner G. L. 1998; Phylogenetic analysis of 22 complete genomes of the human polyomavirus JC virus. J Gen Virol 79:2491–2498
    [Google Scholar]
  30. Krysan P. J., Calos M. P. 1993; Epstein-Barr virus-based vectors that replicate in rodent cells. Gene 136:137–143 [CrossRef]
    [Google Scholar]
  31. McCann E. M., Kelly G. L., Rickinson A. B., Bell A. I. 2001; Genetic analysis of the Epstein–Barr virus-coded leader protein EBNA-LP as a co-activator of EBNA2 function. J Gen Virol 82:3067–3079
    [Google Scholar]
  32. Nichol S. T., Spiropoulou C. F., Morzunov S. & 7 other authors; 1993; Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science 262:914–917 [CrossRef]
    [Google Scholar]
  33. Ohara N., Hayashi K., Teramoto N., Oka T., Fujimoto K., Yoshikawa Y., Castanos-Velez E., Biberfeld P., Akagi T. 2000; Sequence analysis and variation of EBNA-1 in Epstein-Barr virus-related herpesvirus of cynomolgus monkey. Intervirology 43:102–106 [CrossRef]
    [Google Scholar]
  34. Pallesen G., Hamilton-Dutoit S. J., Zhou X. 1993; The association of Epstein-Barr virus (EBV) with T cell lymphoproliferations and Hodgkin's disease: two new developments in the EBV field. Adv Cancer Res 62:179–239
    [Google Scholar]
  35. Peng R., Gordadze A. V., Fuentes Pananá E. M., Wang F., Zong J., Hayward G. S., Tan J., Ling P. D. 2000; Sequence and functional analysis of EBNA-LP and EBNA2 proteins from nonhuman primate lymphocryptoviruses. J Virol 74:379–389 [CrossRef]
    [Google Scholar]
  36. Rémond M., Sheldrick P., Lebreton F., Nardeux P., Foulon T. 1996; Gene organization in the UL region and inverted repeats of the canine herpesvirus genome. J Gen Virol 77:37–48 [CrossRef]
    [Google Scholar]
  37. Rivailler P., Jiang H., Cho Y., Quink C., Wang F. 2002; Complete nucleotide sequence of the rhesus lymphocryptovirus: genetic validation for an Epstein-Barr virus animal model. J Virol 76:421–426 [CrossRef]
    [Google Scholar]
  38. Rowe M., Rowe D. T., Gregory C. D., Young L. S., Farrell P. J., Rupani H., Rickinson A. B. 1987; Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt's lymphoma cells. EMBO J 6:2743–2751
    [Google Scholar]
  39. Shope T., Dechairo D., Miller G. 1973; Malignant lymphoma in cottontop marmosets after inoculation with Epstein–Barr virus. Proc Natl Acad Sci U S A 70:2487–2491 [CrossRef]
    [Google Scholar]
  40. Sokal R. R., Michener C. D. 1958; A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38:1409–1438
    [Google Scholar]
  41. Virgin H. W. IV, Latreille P., Wamsley P., Hallsworth K., Weck K. E., Dal Canto A. J., Speck S. H. 1997; Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71:5894–5904
    [Google Scholar]
  42. Volsky D. J., Shapiro I. M., Klein G. 1980; Transfer of Epstein–Barr virus receptors to receptor-negative cells permits virus penetration and antigen expression. Proc Natl Acad Sci U S A 77:5453–5457 [CrossRef]
    [Google Scholar]
  43. Wedderburn N., Edwards J. M. B., Desgranges C., Fontaine C., Cohen B., de The G. 1984; Infectious mononucleosis-like response in common marmosets infected with Epstein-Barr virus. J Infect Dis 150:878–882 [CrossRef]
    [Google Scholar]
  44. Yang L., Maruo S., Takada K. 2000; CD21-mediated entry and stable infection by Epstein-Barr virus in canine and rat cells. J Virol 74:10745–10751 [CrossRef]
    [Google Scholar]
  45. Yates J. L., Warren N., Sugden B. 1985; Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313:812–815 [CrossRef]
    [Google Scholar]
  46. Yoshiyama H., Imai S., Shimizu N., Takada K. 1997; Epstein-Barr virus infection of human gastric carcinoma cells: implication of the existence of a new virus receptor different from CD21. J Virol 71:5688–5691
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.80792-0
Loading
/content/journal/jgv/10.1099/vir.0.80792-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error