1887

Abstract

A yeast two-hybrid screen using EBNA3C as bait revealed an interaction between this Epstein–Barr virus (EBV)-encoded nuclear protein and the C8 (7) subunit of the human 20S proteasome. The interaction was confirmed by glutathione -transferase (GST) pull-down experiments and these also revealed that the related proteins EBNA3A and EBNA3B can bind similarly to C8/7. The interaction between these viral proteins and GST–C8/7 was shown to be significantly more robust than the previously reported interaction between C8/7 and the cyclin-dependent kinase inhibitor p21. Co-immunoprecipitation of the EBNA3 proteins with C8/7 was also demonstrated after transfection of expression vectors into B cells. Consistent with this ability to bind directly to an -subunit of the 20S proteasome, EBNAs 3A, 3B and 3C were all degraded by purified 20S proteasomes. However, surprisingly, no sign of proteasome-mediated turnover of these latent viral proteins in EBV-immortalized B cells could be detected, even in the presence of gamma interferon. In actively proliferating lymphoblastoid cell lines, EBNAs 3A, 3B and 3C appear to be remarkably stable, with no evidence of either de novo synthesis or proteasome-mediated degradation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80763-0
2005-05-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/5/vir861269.html?itemId=/content/journal/jgv/10.1099/vir.0.80763-0&mimeType=html&fmt=ahah

References

  1. Bain, M., Watson, R. J., Farrell, P. J. & Allday, M. J. ( 1996; ). Epstein-Barr virus nuclear antigen 3C is a powerful repressor of transcription when tethered to DNA. J Virol 70, 2481–2489.
    [Google Scholar]
  2. Baldi, P., Brunak, S., Frasconi, P., Soda, G. & Pollastri, G. ( 1999; ). Exploiting the past and the future in protein secondary structure prediction. Bioinformatics 15, 937–946.[CrossRef]
    [Google Scholar]
  3. Barolo, S., Stone, T., Bang, A. G. & Posakony, J. W. ( 2002; ). Default repression and Notch signaling: Hairless acts as an adaptor to recruit the corepressors Groucho and dCtBP to Suppressor of Hairless. Genes Dev 16, 1964–1976.[CrossRef]
    [Google Scholar]
  4. Baumeister, W., Walz, J., Zühl, F. & Seemüller, E. ( 1998; ). The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380.[CrossRef]
    [Google Scholar]
  5. Bloom, J., Amador, V., Bartolini, F., DeMartino, G. & Pagano, M. ( 2003; ). Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation. Cell 115, 71–82.[CrossRef]
    [Google Scholar]
  6. Boelens, W. C., Croes, Y. & de Jong, W. W. ( 2001; ). Interaction between αB-crystallin and the human 20S proteasomal subunit C8/α7. Biochim Biophys Acta 1544, 311–319.[CrossRef]
    [Google Scholar]
  7. Bornkamm, G. W. & Hammerschmidt, W. ( 2001; ). Molecular virology of Epstein–Barr virus. Philos Trans R Soc Lond B Biol Sci 356, 437–459.[CrossRef]
    [Google Scholar]
  8. Cludts, I. & Farrell, P. J. ( 1998; ). Multiple functions within the Epstein-Barr virus EBNA-3A protein. J Virol 72, 1862–1869.
    [Google Scholar]
  9. Förster, A. & Hill, C. P. ( 2003; ). Proteasome degradation: enter the substrate. Trends Cell Biol 13, 550–553.[CrossRef]
    [Google Scholar]
  10. Goldberg, A. L., Cascio, P., Saric, T. & Rock, K. L. ( 2002; ). The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol Immunol 39, 147–164.[CrossRef]
    [Google Scholar]
  11. Hickabottom, M., Parker, G. A., Freemont, P., Crook, T. & Allday, M. J. ( 2002; ). Two nonconsensus sites in the Epstein-Barr virus oncoprotein EBNA3A cooperate to bind the co-repressor carboxyl-terminal-binding protein (CtBP). J Biol Chem 277, 47197–47204.[CrossRef]
    [Google Scholar]
  12. Khanna, R., Burrows, S. R., Kurilla, M. G., Jacob, C. A., Misko, I. S., Sculley, T. B., Kieff, E. & Moss, D. J. ( 1992; ). Localization of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications for vaccine development. J Exp Med 176, 169–176.[CrossRef]
    [Google Scholar]
  13. Kieff, E. & Rickinson, A. B. ( 2001; ). Epstein-Barr virus and its replication. In Fields Virology, 4th edn, pp. 2511–2573. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  14. Kisselev, A. F., Akopian, T. N., Woo, K. M. & Goldberg, A. L. ( 1999; ). The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes: implications for understanding the degradative mechanism and antigen presentation. J Biol Chem 274, 3363–3371.[CrossRef]
    [Google Scholar]
  15. Knight, J. S., Lan, K., Subramanian, C. & Robertson, E. S. ( 2003; ). Epstein-Barr virus nuclear antigen 3C recruits histone deacetylase activity and associates with the corepressors mSin3A and NCoR in human B-cell lines. J Virol 77, 4261–4272.[CrossRef]
    [Google Scholar]
  16. Le Roux, A., Kerdiles, B., Walls, D., Dedieu, J.-F. & Perricaudet, M. ( 1994; ). The Epstein-Barr virus determined nuclear antigens EBNA-3A, -3B, and -3C repress EBNA-2-mediated transactivation of the viral terminal protein 1 gene promoter. Virology 205, 596–602.[CrossRef]
    [Google Scholar]
  17. Lin, J., Johannsen, E., Robertson, E. & Kieff, E. ( 2002; ). Epstein-Barr virus nuclear antigen 3C putative repression domain mediates coactivation of the LMP1 promoter with EBNA-2. J Virol 76, 232–242.[CrossRef]
    [Google Scholar]
  18. Liu, C.-W., Corboy, M. J., DeMartino, G. N. & Thomas, P. J. ( 2003; ). Endoproteolytic activity of the proteasome. Science 299, 408–411.[CrossRef]
    [Google Scholar]
  19. Maki, C. G. & Howley, P. M. ( 1997; ). Ubiquitination of p53 and p21 is differentially affected by ionizing and UV radiation. Mol Cell Biol 17, 355–363.
    [Google Scholar]
  20. Marshall, D. & Sample, C. ( 1995; ). Epstein-Barr virus nuclear antigen 3C is a transcriptional regulator. J Virol 69, 3624–3630.
    [Google Scholar]
  21. Moss, D. J., Burrows, S. R., Silins, S. L., Misko, I. & Khanna, R. ( 2001; ). The immunology of Epstein–Barr virus infection. Philos Trans R Soc Lond B Biol Sci 356, 475–488.[CrossRef]
    [Google Scholar]
  22. O'Nions, J. & Allday, M. J. ( 2004; ). Deregulation of the cell cycle by the Epstein-Barr virus. Adv Cancer Res 92, 119–186.
    [Google Scholar]
  23. Orlowski, M. & Wilk, S. ( 2003; ). Ubiquitin-independent proteolytic functions of the proteasome. Arch Biochem Biophys 415, 1–5.[CrossRef]
    [Google Scholar]
  24. Pickart, C. M. & Cohen, R. E. ( 2004; ). Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5, 177–187.[CrossRef]
    [Google Scholar]
  25. Pollastri, G., Przybylski, D., Rost, B. & Baldi, P. ( 2002; ). Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 47, 228–235.[CrossRef]
    [Google Scholar]
  26. Radkov, S. A., Bain, M., Farrell, P. J., West, M., Rowe, M. & Allday, M. J. ( 1997; ). Epstein-Barr virus EBNA3C represses Cp, the major promoter for EBNA expression, but has no effect on the promoter of the cell gene CD21. J Virol 71, 8552–8562.
    [Google Scholar]
  27. Radkov, S. A., Touitou, R., Brehm, A., Rowe, M., West, M., Kouzarides, T. & Allday, M. J. ( 1999; ). Epstein-Barr virus nuclear antigen 3C interacts with histone deacetylase to repress transcription. J Virol 73, 5688–5697.
    [Google Scholar]
  28. Rickinson, A. B. & Moss, D. J. ( 1997; ). Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol 15, 405–431.[CrossRef]
    [Google Scholar]
  29. Sheaff, R. J., Singer, J. D., Swanger, J., Smitherman, M., Roberts, J. M. & Clurman, B. E. ( 2000; ). Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol Cell 5, 403–410.[CrossRef]
    [Google Scholar]
  30. Subramanian, C., Hasan, S., Rowe, M., Hottiger, M., Orre, R. & Robertson, E. S. ( 2002; ). Epstein-Barr virus nuclear antigen 3C and prothymosin alpha interact with the p300 transcriptional coactivator at the CH1 and CH3/HAT domains and cooperate in regulation of transcription and histone acetylation. J Virol 76, 4699–4708.[CrossRef]
    [Google Scholar]
  31. Thorley-Lawson, D. A. ( 2001; ). Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 1, 75–82.[CrossRef]
    [Google Scholar]
  32. Thorley-Lawson, D. A. & Gross, A. ( 2004; ). Persistence of the Epstein–Barr virus and the origins of associated lymphomas. N Engl J Med 350, 1328–1337.[CrossRef]
    [Google Scholar]
  33. Touitou, R., Hickabottom, M., Parker, G., Crook, T. & Allday, M. J. ( 2001a; ). Physical and functional interactions between the corepressor CtBP and the Epstein-Barr virus nuclear antigen EBNA3C. J Virol 75, 7749–7755.[CrossRef]
    [Google Scholar]
  34. Touitou, R., Richardson, J., Bose, S., Nakanishi, M., Rivett, J. & Allday, M. J. ( 2001b; ). A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 α-subunit of the 20S proteasome. EMBO J 20, 2367–2375.[CrossRef]
    [Google Scholar]
  35. Wade, M. & Allday, M. J. ( 2000; ). Epstein-Barr virus suppresses a G2/M checkpoint activated by genotoxins. Mol Cell Biol 20, 1344–1360.[CrossRef]
    [Google Scholar]
  36. Waltzer, L., Perricaudet, M., Sergeant, A. & Manet, E. ( 1996; ). Epstein-Barr virus EBNA3A and EBNA3C proteins both repress RBP-Jκ–EBNA2-activated transcription by inhibiting the binding of RBP-Jκ to DNA. J Virol 70, 5909–5915.
    [Google Scholar]
  37. Yewdell, J. ( 2002; ). To DRiP or not to DRiP: generating peptide ligands for MHC class I molecules from biosynthesized proteins. Mol Immunol 39, 139–146.[CrossRef]
    [Google Scholar]
  38. Young, L. S. & Rickinson, A. B. ( 2004; ). Epstein–Barr virus: 40 years on. Nat Rev Cancer 4, 757–768.[CrossRef]
    [Google Scholar]
  39. Zhao, B. & Sample, C. E. ( 2000; ). Epstein-Barr virus nuclear antigen 3C activates the latent membrane protein 1 promoter in the presence of Epstein-Barr virus nuclear antigen 2 through sequences encompassing an Spi-1/Spi-B binding site. J Virol 74, 5151–5160.[CrossRef]
    [Google Scholar]
  40. Zimber-Strobl, U. & Strobl, L. J. ( 2001; ). EBNA2 and Notch signalling in Epstein–Barr virus mediated immortalization of B lymphocytes. Semin Cancer Biol 11, 423–434.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80763-0
Loading
/content/journal/jgv/10.1099/vir.0.80763-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error