1887

Abstract

The aim of this study was to inhibit influenza virus M2 protein expression by mutating the splicing signal of the M gene. Mutations were introduced into the GU dinucleotide sequence at the 5′-proximal splicing site of the M gene (corresponding to nt 52–53 of M cRNA). Transfected cells expressing mutated M viral ribonucleoproteins failed to generate M2 mRNA. Interestingly, recombinant viruses with mutations at the dinucleotide sequence were viable, albeit attenuated, in cell culture. These recombinants failed to express M2 mRNA and M2 protein. These observations demonstrated that the GU invariant dinucleotide sequence at the 5′-proximal splicing site of M gene is essential for M2 mRNA synthesis. These results also indicated that the M2 ion-channel protein is critical, but not essential, for virus replication in cell culture. This approach may provide a new way of producing attenuated influenza A virus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80727-0
2005-05-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/5/vir861447.html?itemId=/content/journal/jgv/10.1099/vir.0.80727-0&mimeType=html&fmt=ahah

References

  1. Aebi, M., Hornig, H., Padgett, R. A., Reiser, J. & Weissmann, C. ( 1986; ). Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA. Cell 47, 555–565.[CrossRef]
    [Google Scholar]
  2. Agris, C. H., Nemeroff, M. E. & Krug, R. M. ( 1989; ). A block in mammalian splicing occurring after formation of large complexes containing U1, U2, U4, U5, and U6 small nuclear ribonucleoproteins. Mol Cell Biol 9, 259–267.
    [Google Scholar]
  3. Alonso-Caplen, F. V. & Krug, R. M. ( 1991; ). Regulation of the extent of splicing of influenza virus NS1 mRNA: role of the rates of splicing and of the nucleocytoplasmic transport of NS1 mRNA. Mol Cell Biol 11, 1092–1098.
    [Google Scholar]
  4. Bourmakina, S. V. & García-Sastre, A. ( 2003; ). Reverse genetics studies on the filamentous morphology of influenza A virus. J Gen Virol 84, 517–527.[CrossRef]
    [Google Scholar]
  5. Bui, M., Whittaker, G. & Helenius, A. ( 1996; ). Effect of M1 protein and low pH on nuclear transport of influenza virus ribonucleoproteins. J Virol 70, 8391–8401.
    [Google Scholar]
  6. Burset, M., Seledtsov, I. A. & Solovyev, V. V. ( 2000; ). Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Res 28, 4364–4375.[CrossRef]
    [Google Scholar]
  7. Ciampor, F., Bayley, P. M., Nermut, M. V., Hirst, E. M. A., Sugrue, R. J. & Hay, A. J. ( 1992; ). Evidence that the amantadine-induced, M2-mediated conversion of influenza A virus hemagglutinin to the low pH conformation occurs in an acidic trans Golgi compartment. Virology 188, 14–24.[CrossRef]
    [Google Scholar]
  8. Elleman, C. J. & Barclay, W. S. ( 2004; ). The M1 matrix protein controls the filamentous phenotype of influenza A virus. Virology 321, 144–153.[CrossRef]
    [Google Scholar]
  9. Fodor, E., Pritlove, D. C. & Brownlee, G. G. ( 1994; ). The influenza virus panhandle is involved in the initiation of transcription. J Virol 68, 4092–4096.
    [Google Scholar]
  10. Fodor, E., Devenish, L., Engelhardt, O. G., Palese, P., Brownlee, G. G. & García-Sastre, A. ( 1999; ). Rescue of influenza A virus from recombinant DNA. J Virol 73, 9679–9682.
    [Google Scholar]
  11. Fodor, E., Crow, M., Mingay, L. J., Deng, T., Sharps, J., Fechter, P. & Brownlee, G. G. ( 2002; ). A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J Virol 76, 8989–9001.[CrossRef]
    [Google Scholar]
  12. Goto, H. & Kawaoka, Y. ( 1998; ). A novel mechanism for the acquisition of virulence by a human influenza A virus. Proc Natl Acad Sci U S A 95, 10224–10228.[CrossRef]
    [Google Scholar]
  13. Goto, H. & Kawaoka, Y. ( 2000; ). Assays for functional binding of plasminogen to viral proteins. Methods 21, 159–163.[CrossRef]
    [Google Scholar]
  14. Hastings, M. L. & Krainer, A. R. ( 2001; ). Pre-mRNA splicing in the new millennium. Curr Opin Cell Biol 13, 302–309.[CrossRef]
    [Google Scholar]
  15. Hirose, Y. & Manley, J. L. ( 1998; ). RNA polymerase II is an essential mRNA polyadenylation factor. Nature 395, 93–96.[CrossRef]
    [Google Scholar]
  16. Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. ( 2000; ). A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97, 6108–6113.[CrossRef]
    [Google Scholar]
  17. Hoffmann, E., Stech, J., Guan, Y., Webster, R. G. & Perez, D. R. ( 2001; ). Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146, 2275–2289.[CrossRef]
    [Google Scholar]
  18. Huang, T.-S., Palese, P. & Krystal, M. ( 1990; ). Determination of influenza virus proteins required for genome replication. J Virol 64, 5669–5673.
    [Google Scholar]
  19. Hughey, P. G., Compans, R. W., Zebedee, S. L. & Lamb, R. A. ( 1992; ). Expression of the influenza A virus M2 protein is restricted to apical surfaces of polarized epithelial cells. J Virol 66, 5542–5552.
    [Google Scholar]
  20. Hughey, P. G., Roberts, P. C., Holsinger, L. J., Zebedee, S. L., Lamb, R. A. & Compans, R. W. ( 1995; ). Effects of antibody to the influenza A virus M2 protein on M2 surface expression and virus assembly. Virology 212, 411–421.[CrossRef]
    [Google Scholar]
  21. Inglis, S. C. & Brown, C. M. ( 1981; ). Spliced and unspliced RNAs encoded by virion RNA segment 7 of influenza virus. Nucleic Acids Res 9, 2727–2740.[CrossRef]
    [Google Scholar]
  22. Kemler, I., Whittaker, G. & Helenius, A. ( 1994; ). Nuclear import of microinjected influenza virus ribonucleoproteins. Virology 202, 1028–1033.[CrossRef]
    [Google Scholar]
  23. Lamb, R. A. & Lai, C.-J. ( 1980; ). Sequence of interrupted and uninterrupted mRNAs and cloned DNA coding for the two overlapping nonstructural proteins of influenza virus. Cell 21, 475–485.[CrossRef]
    [Google Scholar]
  24. Lamb, R. A. & Lai, C.-J. ( 1984; ). Expression of unspliced NS1 mRNA, spliced NS2 mRNA, and a spliced chimera mRNA from cloned influenza virus NS DNA in an SV40 vector. Virology 135, 139–147.[CrossRef]
    [Google Scholar]
  25. Lamb, R. A. & Takeda, M. ( 2001; ). Death by influenza virus protein. Nat Med 7, 1286–1288.[CrossRef]
    [Google Scholar]
  26. Leahy, M. B., Pritlove, D. C., Poon, L. L. M. & Brownlee, G. G. ( 2001; ). Mutagenic analysis of the 5′ arm of the influenza A virus virion RNA promoter defines the sequence requirements for endonuclease activity. J Virol 75, 134–142.[CrossRef]
    [Google Scholar]
  27. McCracken, S., Fong, N., Yankulov, K., Ballantyne, S., Pan, G., Greenblatt, J., Patterson, S. D., Wickens, M. & Bentley, D. L. ( 1997; ). The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357–361.[CrossRef]
    [Google Scholar]
  28. Mena, I., Vivo, A., Pérez, E. & Portela, A. ( 1996; ). Rescue of a synthetic chloramphenicol acetyltransferase RNA into influenza virus-like particles obtained from recombinant plasmids. J Virol 70, 5016–5024.
    [Google Scholar]
  29. Miriami, E., Motro, U., Sperling, J. & Sperling, R. ( 2002; ). Conservation of an open-reading frame as an element affecting 5′ splice site selection. J Struct Biol 140, 116–122.[CrossRef]
    [Google Scholar]
  30. Mount, S. M. ( 2000; ). Genomic sequence, splicing, and gene annotation. Am J Hum Genet 67, 788–792.[CrossRef]
    [Google Scholar]
  31. Nemeroff, M. E., Utans, U., Krämer, A. & Krug, R. M. ( 1992; ). Identification of cis-acting intron and exon regions in influenza virus NS1 mRNA that inhibit splicing and cause the formation of aberrantly sedimenting presplicing complexes. Mol Cell Biol 12, 962–970.
    [Google Scholar]
  32. Nissim-Rafinia, M. & Kerem, B. ( 2002; ). Splicing regulation as a potential genetic modifier. Trends Genet 18, 123–127.[CrossRef]
    [Google Scholar]
  33. Plotch, S. J. & Krug, R. M. ( 1986; ). In vitro splicing of influenza viral NS1 mRNA and NS1–β-globin chimeras: possible mechanisms for the control of viral mRNA splicing. Proc Natl Acad Sci U S A 83, 5444–5448.[CrossRef]
    [Google Scholar]
  34. Poon, L. L. M., Pritlove, D. C., Fodor, E. & Brownlee, G. G. ( 1999; ). Direct evidence that the poly(A) tail of influenza A virus mRNA is synthesized by reiterative copying of a U track in the virion RNA template. J Virol 73, 3473–3476.
    [Google Scholar]
  35. Poon, L. L. M., Fodor, E. & Brownlee, G. G. ( 2000; ). Polyuridylated mRNA synthesized by a recombinant influenza virus is defective in nuclear export. J Virol 74, 418–427.[CrossRef]
    [Google Scholar]
  36. Roberts, P. C., Lamb, R. A. & Compans, R. W. ( 1998; ). The M1 and M2 proteins of influenza A virus are important determinants in filamentous particle formation. Virology 240, 127–137.[CrossRef]
    [Google Scholar]
  37. Sha, B. & Luo, M. ( 1997; ). Structure of a bifunctional membrane-RNA binding protein, influenza virus matrix protein M1. Nat Struct Biol 4, 239–244.[CrossRef]
    [Google Scholar]
  38. Shih, S.-R. & Krug, R. M. ( 1996; ). Novel exploitation of a nuclear function by influenza virus: the cellular SF2/ASF splicing factor controls the amount of the essential viral M2 ion channel protein in infected cells. EMBO J 15, 5415–5427.
    [Google Scholar]
  39. Shih, S.-R., Nemeroff, M. E. & Krug, R. M. ( 1995; ). The choice of alternative 5′ splice sites in influenza virus M1 mRNA is regulated by the viral polymerase complex. Proc Natl Acad Sci U S A 92, 6324–6328.[CrossRef]
    [Google Scholar]
  40. Sugrue, R. J., Bahadur, G., Zambon, M. C., Hall-Smith, M., Douglas, A. R. & Hay, A. J. ( 1990; ). Specific structural alteration of the influenza haemagglutinin by amantadine. EMBO J 9, 3469–3476.
    [Google Scholar]
  41. Takeda, M., Pekosz, A., Shuck, K., Pinto, L. H. & Lamb, R. A. ( 2002; ). Influenza A virus M2 ion channel activity is essential for efficient replication in tissue culture. J Virol 76, 1391–1399.[CrossRef]
    [Google Scholar]
  42. Takeuchi, K. & Lamb, R. A. ( 1994; ). Influenza virus M2 protein ion channel activity stabilizes the native form of fowl plague virus hemagglutinin during intracellular transport. J Virol 68, 911–919.
    [Google Scholar]
  43. Valcárcel, J., Portela, A. & Ortín, J. ( 1991; ). Regulated M1 mRNA splicing in influenza virus-infected cells. J Gen Virol 72, 1301–1308.[CrossRef]
    [Google Scholar]
  44. Valcárcel, J., Fortes, P. & Ortín, J. ( 1993; ). Splicing of influenza virus matrix protein mRNA expressed from a simian virus 40 recombinant. J Gen Virol 74, 1317–1326.[CrossRef]
    [Google Scholar]
  45. Watanabe, T., Watanabe, S., Ito, H., Kida, H. & Kawaoka, Y. ( 2001; ). Influenza A virus can undergo multiple cycles of replication without M2 ion channel activity. J Virol 75, 5656–5662.[CrossRef]
    [Google Scholar]
  46. Watanabe, T., Watanabe, S., Kida, H. & Kawaoka, Y. ( 2002; ). Influenza A virus with defective M2 ion channel activity as a live vaccine. Virology 299, 266–270.[CrossRef]
    [Google Scholar]
  47. Weber, S. & Aebi, M. ( 1988; ). In vitro splicing of mRNA precursors: 5′ cleavage site can be predicted from the interaction between the 5′ splice region and the 5′ terminus of U1 snRNA. Nucleic Acids Res 16, 471–486.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80727-0
Loading
/content/journal/jgv/10.1099/vir.0.80727-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error