1887

Abstract

Gammaherpesviruses persist as latent episomes in a dynamic lymphocyte pool. The regulated production of an episome maintenance protein is therefore crucial to their survival. The transcription initiation site of the murine gammaherpesvirus 68 episome maintenance protein, ORF73, was mapped to the viral terminal repeats, more than 10 kb distant from the open reading frame (ORF) itself. A 5′ non-coding exon in the terminal repeats was spliced to the right end of the viral unique sequence, and then across ORFs 75a, 75b, 75c and 74 to ORF73. The right-hand portion of a single repeat unit was sufficient for constitutive promoter activity. The unique left end of the viral genome further enhanced ORF73 transcription. This, together with the large size of the predominant ORF73 mRNA, suggested that transcription initiates in distal repeat units and then splices between repeats to generate an extensive 5′ untranslated region. A second promoter in the left-hand portion of the proximal terminal repeat unit generated a transcript which overlapped that of ORF73, but failed to splice to the ORF73 coding exon and so transcribed ORF75a. In distal repeat copies, however, transcription from this promoter would enter the next repeat unit to become an ORF73 mRNA. There was a third promoter just upstream of ORF73 itself. These data indicate that ORF73 transcription is highly complex, and support the idea that the terminal repeats of gamma-2-herpesviruses constitute a vital component of episomal persistence.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80565-0
2005-03-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/3/vir860561.html?itemId=/content/journal/jgv/10.1099/vir.0.80565-0&mimeType=html&fmt=ahah

References

  1. Adler, H., Messerle, M. & Koszinowski, U. H. ( 2001; ). Virus reconstituted from infectious bacterial artificial chromosome (BAC)-cloned murine gammaherpesvirus 68 acquires wild-type properties in vivo only after excision of BAC vector sequences. J Virol 75, 5692–5696.[CrossRef]
    [Google Scholar]
  2. Babcock, G. J., Decker, L. L., Volk, M. & Thorley-Lawson, D. A. ( 1998; ). EBV persistence in memory B cells in vivo. Immunity 9, 395–404.[CrossRef]
    [Google Scholar]
  3. Ballestas, M. E. & Kaye, K. M. ( 2001; ). Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cis-acting terminal repeat (TR) sequence and specifically binds TR DNA. J Virol 75, 3250–3258.[CrossRef]
    [Google Scholar]
  4. Ballestas, M. E., Chatis, P. A. & Kaye, K. M. ( 1999; ). Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284, 641–644.[CrossRef]
    [Google Scholar]
  5. Bieleski, L. & Talbot, S. J. ( 2001; ). Kaposi's sarcoma-associated herpesvirus vCyclin open reading frame contains an internal ribosome entry site. J Virol 75, 1864–1869.[CrossRef]
    [Google Scholar]
  6. Bowden, R. J., Simas, J. P., Davis, A. J. & Efstathiou, S. ( 1997; ). Murine gammaherpesvirus 68 encodes tRNA-like sequences which are expressed during latency. J Gen Virol 78, 1675–1687.
    [Google Scholar]
  7. Bridgeman, A., Stevenson, P. G., Simas, J. P. & Efstathiou, S. ( 2001; ). A secreted chemokine binding protein encoded by murine gammaherpesvirus-68 is necessary for the establishment of a normal latent load. J Exp Med 194, 301–312.[CrossRef]
    [Google Scholar]
  8. Clambey, E. T., Virgin, H. W. IV & Speck, S. H. ( 2000; ). Disruption of the murine gammaherpesvirus 68 M1 open reading frame leads to enhanced reactivation from latency. J Virol 74, 1973–1984.[CrossRef]
    [Google Scholar]
  9. Coleman, H. M., Brierley, I. & Stevenson, P. G. ( 2003; ). An internal ribosome entry site directs translation of the murine gammaherpesvirus 68 MK3 open reading frame. J Virol 77, 13093–13105.[CrossRef]
    [Google Scholar]
  10. Davenport, M. G. & Pagano, J. S. ( 1999; ). Expression of EBNA-1 mRNA is regulated by cell cycle during Epstein-Barr virus type I latency. J Virol 73, 3154–3161.
    [Google Scholar]
  11. Dittmer, D., Lagunoff, M., Renne, R., Staskus, K., Haase, A. & Ganem, D. ( 1998; ). A cluster of latently expressed genes in Kaposi's sarcoma-associated herpesvirus. J Virol 72, 8309–8315.
    [Google Scholar]
  12. Dutia, B. M., Stewart, J. P., Clayton, R. A., Dyson, H. & Nash, A. A. ( 1999; ). Kinetic and phenotypic changes in murine lymphocytes infected with murine gammaherpesvirus-68 in vitro. J Gen Virol 80, 2729–2736.
    [Google Scholar]
  13. Efstathiou, S., Ho, Y. M. & Minson, A. C. ( 1990; ). Cloning and molecular characterization of the murine herpesvirus 68 genome. J Gen Virol 71, 1355–1364.[CrossRef]
    [Google Scholar]
  14. Flano, E., Kim, I. J., Woodland, D. L. & Blackman, M. A. ( 2002; ). Gamma-herpesvirus latency is preferentially maintained in splenic germinal center and memory B cells. J Exp Med 196, 1363–1372.[CrossRef]
    [Google Scholar]
  15. Fowler, P., Marques, S., Simas, J. P. & Efstathiou, S. ( 2003; ). ORF73 of murine herpesvirus-68 is critical for the establishment and maintenance of latency. J Gen Virol 84, 3405–3416.[CrossRef]
    [Google Scholar]
  16. Garber, A. C., Hu, J. & Renne, R. ( 2002; ). Latency-associated nuclear antigen (LANA) cooperatively binds to two sites within the terminal repeat, and both sites contribute to the ability of LANA to suppress transcription and to facilitate DNA replication. J Biol Chem 277, 27401–27411.[CrossRef]
    [Google Scholar]
  17. Grundhoff, A. & Ganem, D. ( 2001; ). Mechanisms governing expression of the v-FLIP gene of Kaposi's sarcoma-associated herpesvirus. J Virol 75, 1857–1863.[CrossRef]
    [Google Scholar]
  18. Husain, S. M., Usherwood, E. J., Dyson, H., Coleclough, C., Coppola, M. A., Woodland, D. L., Blackman, M. A., Stewart, J. P. & Sample, J. T. ( 1999; ). Murine gammaherpesvirus M2 gene is latency-associated and its protein a target for CD8+ T lymphocytes. Proc Natl Acad Sci U S A 96, 7508–7513.[CrossRef]
    [Google Scholar]
  19. Isaksson, A., Berggren, M. & Ricksten, A. ( 2003; ). Epstein–Barr virus U leader exon contains an internal ribosome entry site. Oncogene 22, 572–581.[CrossRef]
    [Google Scholar]
  20. Jeong, J. H., Orvis, J., Kim, J. W., McMurtrey, C. P., Renne, R. & Dittmer, D. P. ( 2004; ). Regulation and autoregulation of the promoter for the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus. J Biol Chem 279, 16822–16831.[CrossRef]
    [Google Scholar]
  21. Lan, K., Kuppers, D. A., Verma, S. C. & Robertson, E. S. ( 2004; ). Kaposi's sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen inhibits lytic replication by targeting Rta: a potential mechanism for virus-mediated control of latency. J Virol 78, 6585–6594.[CrossRef]
    [Google Scholar]
  22. Lee, S. P., Brooks, J. M., Al-Jarrah, H. & 9 other authors ( 2004; ). CD8 T cell recognition of endogenously expressed Epstein–Barr virus nuclear antigen 1. J Exp Med 199, 1409–1420.[CrossRef]
    [Google Scholar]
  23. Low, W., Harries, M., Ye, H., Du, M. Q., Boshoff, C. & Collins, M. ( 2001; ). Internal ribosome entry site regulates translation of Kaposi's sarcoma-associated herpesvirus FLICE inhibitory protein. J Virol 75, 2938–2945.[CrossRef]
    [Google Scholar]
  24. Malik, P., Blackbourn, D. J. & Clements, J. B. ( 2004; ). The evolutionarily conserved Kaposi's sarcoma-associated herpesvirus ORF57 protein interacts with REF protein and acts as an RNA export factor. J Biol Chem 279, 33001–33011.[CrossRef]
    [Google Scholar]
  25. Marques, S., Efstathiou, S., Smith, K. G., Haury, M. & Simas, J. P. ( 2003; ). Selective gene expression of latent murine gammaherpesvirus 68 in B lymphocytes. J Virol 77, 7308–7318.[CrossRef]
    [Google Scholar]
  26. Martinez-Guzman, D., Rickabaugh, T., Wu, T. T., Brown, H., Cole, S., Song, M. J., Tong, L. & Sun, R. ( 2003; ). Transcription program of murine gammaherpesvirus 68. J Virol 77, 10488–10503.[CrossRef]
    [Google Scholar]
  27. Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. ( 1999; ). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288, 911–940.[CrossRef]
    [Google Scholar]
  28. May, J. S., Coleman, H. M., Smillie, B., Efstathiou, S. & Stevenson, P. G. ( 2004; ). Forced lytic replication impairs host colonization by a latency-deficient mutant of murine gammaherpesvirus-68. J Gen Virol 85, 137–146.[CrossRef]
    [Google Scholar]
  29. Moorman, N. J., Willer, D. O. & Speck, S. H. ( 2003; ). The gammaherpesvirus 68 latency-associated nuclear antigen homolog is critical for the establishment of splenic latency. J Virol 77, 10295–10303.[CrossRef]
    [Google Scholar]
  30. Nonkwelo, C., Skinner, J., Bell, A., Rickinson, A. & Sample, J. ( 1996; ). Transcription start sites downstream of the Epstein-Barr virus (EBV) Fp promoter in early-passage Burkitt lymphoma cells define a fourth promoter for expression of the EBV EBNA-1 protein. J Virol 70, 623–627.
    [Google Scholar]
  31. Rainbow, L., Platt, G. M., Simpson, G. R., Sarid, R., Gao, S. J., Stoiber, H., Herrington, C. S., Moore, P. S. & Schulz, T. F. ( 1997; ). The 222- to 234-kilodalton latent nuclear protein (LNA) of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. J Virol 71, 5915–5921.
    [Google Scholar]
  32. Renne, R., Barry, C., Dittmer, D., Compitello, N., Brown, P. O. & Ganem, D. ( 2001; ). Modulation of cellular and viral gene expression by the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus. J Virol 75, 458–468.[CrossRef]
    [Google Scholar]
  33. Rochford, R., Lutzke, M. L., Alfinito, R. S., Clavo, A. & Cardin, R. D. ( 2001; ). Kinetics of murine gammaherpesvirus 68 gene expression following infection of murine cells in culture and in mice. J Virol 75, 4955–4963.[CrossRef]
    [Google Scholar]
  34. Rogers, R. P., Woisetschlaeger, M. & Speck, S. H. ( 1990; ). Alternative splicing dictates translational start in Epstein-Barr virus transcripts. EMBO J 9, 2273–2277.
    [Google Scholar]
  35. Rowe, M., Rowe, D. T., Gregory, C. D., Young, L. S., Farrell, P. J., Rupani, H. & Rickinson, A. B. ( 1987; ). Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt's lymphoma cells. EMBO J 6, 2743–2751.
    [Google Scholar]
  36. Sample, J. & Kieff, E. ( 1990; ). Transcription of the Epstein-Barr virus genome during latency in growth-transformed lymphocytes. J Virol 64, 1667–1674.
    [Google Scholar]
  37. Sample, J., Henson, E. B. & Sample, C. ( 1992; ). The Epstein-Barr virus nuclear protein 1 promoter active in type I latency is autoregulated. J Virol 66, 4654–4661.
    [Google Scholar]
  38. Sarid, R., Wiezorek, J. S., Moore, P. S. & Chang, Y. ( 1999; ). Characterization and cell cycle regulation of the major Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) latent genes and their promoter. J Virol 73, 1438–1446.
    [Google Scholar]
  39. Schaefer, B. C., Strominger, J. L. & Speck, S. H. ( 1995; ). Redefining the Epstein-Barr virus-encoded nuclear antigen EBNA-1 gene promoter and transcription initiation site in group I Burkitt lymphoma cell lines. Proc Natl Acad Sci U S A 92, 10565–10569.[CrossRef]
    [Google Scholar]
  40. Stevenson, P. G. & Doherty, P. C. ( 1999; ). Non-antigen-specific B-cell activation following murine gammaherpesvirus infection is CD4 independent in vitro but CD4 dependent in vivo. J Virol 73, 1075–1079.
    [Google Scholar]
  41. Stevenson, P. G., Efstathiou, S., Doherty, P. C. & Lehner, P. J. ( 2000; ). Inhibition of MHC class I-restricted antigen presentation by gamma 2-herpesviruses. Proc Natl Acad Sci U S A 97, 8455–8460.[CrossRef]
    [Google Scholar]
  42. Stevenson, P. G., May, J. S., Smith, X. G., Marques, S., Adler, H., Koszinowski, U. H., Simas, J. P. & Efstathiou, S. ( 2002; ). K3-mediated evasion of CD8+ T cells aids amplification of a latent gamma-herpesvirus. Nat Immunol 3, 733–740.
    [Google Scholar]
  43. Stewart, J. P., Usherwood, E. J., Ross, A., Dyson, H. & Nash, T. ( 1998; ). Lung epithelial cells are a major site of murine gammaherpesvirus persistence. J Exp Med 187, 1941–1951.[CrossRef]
    [Google Scholar]
  44. Sunil-Chandra, N. P., Efstathiou, S. & Nash, A. A. ( 1993; ). Interactions of murine gammaherpesvirus 68 with B and T cell lines. Virology 193, 825–833.[CrossRef]
    [Google Scholar]
  45. Talbot, S. J., Weiss, R. A., Kellam, P. & Boshoff, C. ( 1999; ). Transcriptional analysis of human herpesvirus-8 open reading frames 71, 72, 73, K14, and 74 in a primary effusion lymphoma cell line. Virology 257, 84–94.[CrossRef]
    [Google Scholar]
  46. Tellam, J., Connolly, G., Green, K. J., Miles, J. J., Moss, D. J., Burrows, S. R. & Khanna, R. ( 2004; ). Endogenous presentation of CD8+ T cell epitopes from Epstein-Barr virus-encoded nuclear antigen 1. J Exp Med 199, 1421–1431.[CrossRef]
    [Google Scholar]
  47. Thorley-Lawson, D. A. ( 2001; ). Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 1, 75–82.[CrossRef]
    [Google Scholar]
  48. Tsai, C. N., Liu, S. T. & Chang, Y. S. ( 1995; ). Identification of a novel promoter located within the BamHI Q region of the Epstein-Barr virus genome for the EBNA 1 gene. DNA Cell Biol 14, 767–776.[CrossRef]
    [Google Scholar]
  49. Virgin, H. W. IV, Latreille P., Wamsley, P., Hallsworth, K., Weck, K. E., Dal Canto, A. J. & Speck, S. H. ( 1997; ). Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71, 5894–5904.
    [Google Scholar]
  50. Virgin, H. W. IV, Presti, R. M., Li, X. Y., Liu, C. & Speck, S. H. ( 1999; ). Three distinct regions of the murine gammaherpesvirus 68 genome are transcriptionally active in latently infected mice. J Virol 73, 2321–2332.
    [Google Scholar]
  51. Willer, D. O. & Speck, S. H. ( 2003; ). Long-term latent murine gammaherpesvirus 68 infection is preferentially found within the surface immunoglobulin D-negative subset of splenic B cells in vivo. J Virol 77, 8310–8321.[CrossRef]
    [Google Scholar]
  52. Yates, J. L., Warren, N. & Sugden, B. ( 1985; ). Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313, 812–815.[CrossRef]
    [Google Scholar]
  53. Yin, Y., Manoury, B. & Fahraeus, R. ( 2003; ). Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. Science 301, 1371–1374.[CrossRef]
    [Google Scholar]
  54. Zuker, M. ( 2003; ). mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80565-0
Loading
/content/journal/jgv/10.1099/vir.0.80565-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error