1887

Abstract

Human cytomegalovirus (HCMV) genetic determinants of endothelial-cell tropism and virus transfer to leukocytes (both polymorphonuclear and monocyte) have been recently identified in the UL131–128 genes. Here it is documented that the same genetic determinants of HCMV are responsible for monocyte-derived dendritic-cell (DC) tropism, i.e. all endotheliotropic and leukotropic strains of HCMV are also DC-tropic (or dendrotropic). In fact, all recent clinical HCMV isolates and deletion mutants sparing the UL131–128 locus as well as the endotheliotropic revertants AD169 and Towne were able to productively infect DC following co-culture with infected endothelial cells. On the contrary, the same clinical isolates extensively propagated in human fibroblasts, the UL131–128 deletion mutants and the reference laboratory strains were not. Peak extracellular virus titres in DC were reached 4–7 days post-infection (p.i.). Viral proteins pp65 and p72 were detected 1–3 h p.i., involving the great majority of DC 24 h p.i., while gB was abundantly detected 96 h p.i., when a cytopathic effect first appeared. Infection of DC with cell-free virus released into the medium could only be achieved with HCMV strains extensively adapted to growth in endothelial cells, reaching the peak titres 10 days p.i. DC infected for 24 h with cell-free virus and incubated for 16 h with autologous peripheral blood mononuclear cells were found to act as a potent stimulator of both HCMV-specific CD4- and CD8-mediated immune responses, as determined by cytokine flow cytometry. DC incubated with inactivated crude whole viral antigen preparations were only capable of eliciting a significant CD4-mediated immune response.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80474-0
2005-02-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/2/vir860275.html?itemId=/content/journal/jgv/10.1099/vir.0.80474-0&mimeType=html&fmt=ahah

References

  1. Akter, P., Cunningham, C., McSherry, B. P. & 8 other authors ( 2003; ). Two novel spliced genes in human cytomegalovirus. J Gen Virol 84, 1117–1122.[CrossRef]
    [Google Scholar]
  2. Andrews, D. M., Andoniou, C. E., Granucci, F., Ricciardi-Castagnoli, P. & Degli-Esposti, M. A. ( 2001; ). Infection of dendritic cells by murine cytomegalovirus induces functional paralysis. Nat Immunol 2, 1077–1084.[CrossRef]
    [Google Scholar]
  3. Baldwin, B. R., Zhang, C. O. & Keay, S. ( 2000; ). Cloning and epitope mapping of a functional partial fusion receptor for human cytomegalovirus gH. J Gen Virol 81, 27–35.
    [Google Scholar]
  4. Compton, T., Nowlin, D. M. & Cooper, N. R. ( 1993; ). Initiation of human cytomegalovirus infection requires interaction with cell surface heparan sulfate. Virology 193, 834–841.[CrossRef]
    [Google Scholar]
  5. Diamond, D. J., York, J., Sun, J. Y., Wright, C. L. & Forman, S. J. ( 1997; ). Development of a candidate HLA A*0201 restricted peptide-based vaccine against human cytomegalovirus infection. Blood 90, 1751–1767.
    [Google Scholar]
  6. Dunn, W., Chou, C., Li, H., Hai, R., Patterson, D., Stolc, V., Zhu, H. & Liu, F. ( 2003; ). Functional profiling of a human cytomegalovirus genome. Proc Natl Acad Sci U S A 100, 14223–14228.[CrossRef]
    [Google Scholar]
  7. Geijtenbeek, T. B., Krooshoop, D. J., Bleijs, D. A., van Vliet, S. J., van Duijnhoven, G. C., Grabovski, V., Alon, R., Figdor, C. G. & van Kooyk, Y. ( 2000a; ). DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol 1, 353–357.[CrossRef]
    [Google Scholar]
  8. Geijtenbeek, T. B., Torensma, R., van Vliet, S. J., van Duijnhoven, G. C., Adema, G. J., van Kooyk, Y. & Figdor, C. G. ( 2000b; ). Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune response. Cell 100, 575–585.[CrossRef]
    [Google Scholar]
  9. Gerna, G., Revello, M. G., Percivalle, E., Zavattoni, M., Parea, M. & Battaglia, M. ( 1990; ). Quantification of human cytomegalovirus viremia by using monoclonal antibodies to different viral proteins. J Clin Microbiol 28, 2681–2688.
    [Google Scholar]
  10. Gerna, G., Percivalle, E., Baldanti, F., Sozzani, S., Lanzarini, P., Genini, E., Lilleri, D. & Revello, M. G. ( 2000; ). Human cytomegalovirus replicates abortively in polymorphonuclear leukocytes after transfer from infected endothelial cells via transient microfusion events. J Virol 74, 5629–5638.[CrossRef]
    [Google Scholar]
  11. Gerna, G., Piccinini, G., Genini, E. & 10 other authors ( 2001; ). Declining levels of rescued lymphoproliferative response to human cytomegalovirus (HCMV) in AIDS patients with or without HCMV disease following long-term HAART. J Acquir Immune Defic Syndr 28, 320–331.[CrossRef]
    [Google Scholar]
  12. Gerna, G., Percivalle, E., Baldanti, F. & Revello, M. G. ( 2002a; ). Lack of transmission to polymorphonuclear leukocytes and human umbilical vein endothelial cells as a marker of attenuation of human cytomegalovirus. J Med Virol 66, 335–339.[CrossRef]
    [Google Scholar]
  13. Gerna, G., Percivalle, E., Sarasini, A., Baldanti, F. & Revello, M. G. ( 2002b; ). The attenuated Towne strain of human cytomegalovirus may revert to both endothelial cell tropism and leuko- (neutrophil- and monocyte-) tropism in vitro. J Gen Virol 83, 1993–2000.
    [Google Scholar]
  14. Gerna, G., Percivalle, E., Sarasini, A. & Revello, M. G. ( 2002c; ). Human cytomegalovirus and human umbilical vein endothelial cells: restriction of primary isolation to blood samples and susceptibilities of clinical isolates from other sources to adaptation. J Clin Microbiol 40, 233–238.[CrossRef]
    [Google Scholar]
  15. Gerna, G., Baldanti, F., Percivalle, E., Zavattoni, M., Campanini, G. & Revello, M. G. ( 2003a; ). Early identification of human cytomegalovirus strains by the shell vial assay is prevented by a novel amino acid substitution in UL123 IE1 gene product. J Clin Microbiol 41, 4494–4495.[CrossRef]
    [Google Scholar]
  16. Gerna, G., Percivalle, E., Sarasini, A., Baldanti, F., Campanini, G. & Revello, M. G. ( 2003b; ). Rescue of human cytomegalovirus strain AD169 tropism for both leukocytes and human endothelial cells. J Gen Virol 84, 1431–1436.[CrossRef]
    [Google Scholar]
  17. Gyulai, Z., Endresz, V., Burian, K. & 7 other authors ( 2000; ). Cytotoxic T lymphocyte (CTL) responses to human cytomegalovirus pp65, IE1-Exon4, pp150, and pp28 in healthy individuals: reevaluation of prevalence of IE1-specific CTLs. J Infect Dis 181, 1537–1546.[CrossRef]
    [Google Scholar]
  18. Hahn, G., Khan, H., Baldanti, F., Koszinowski, U. K., Revello, M. G. & Gerna, G. ( 2002; ). The human cytomegalovirus ribonucleotide reductase homolog UL45 is dispensable for growth in endothelial cells, as determined by a BAC-cloned clinical isolate of human cytomegalovirus with preserved wild type characteristics. J Virol 76, 9551–9555.[CrossRef]
    [Google Scholar]
  19. Hahn, G., Revello, M. G., Patrone, M. & 9 other authors ( 2004; ). Human cytomegalovirus UL131-128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. J Virol 78, 10023–10033.[CrossRef]
    [Google Scholar]
  20. Halary, F., Amara, A., Lortat-Jacob, H. & 7 other authors ( 2002; ). Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 17, 653–664.[CrossRef]
    [Google Scholar]
  21. Ibanez, C. E., Schrier, R., Ghazal, P., Wiley, C. & Nelson, J. A. ( 1991; ). Human cytomegalovirus productively infects primary differentiated macrophages. J Virol 65, 6581–6588.
    [Google Scholar]
  22. Lathey, J. L. & Spector, S. A. ( 1991; ). Unrestricted replication of human cytomegalovirus in hydrocortisone-treated macrophages. J Virol 65, 6371–6375.
    [Google Scholar]
  23. Minton, E. J., Tysoe, C., Sinclair, J. H. & Sissons, J. G. P. ( 1994; ). Human cytomegalovirus infection of the monocyte/macrophage lineage in bone marrow. J Virol 68, 4017–4021.
    [Google Scholar]
  24. Moutaftsi, M., Mehl, A. M., Borysiewicz, L. K. & Tabi, Z. ( 2002; ). Human cytomegalovirus inhibits maturation and impairs function of monocyte-derived dendritic cells. Blood 99, 2913–2921.[CrossRef]
    [Google Scholar]
  25. Pepperl-Klindworth, S., Frankenberg, N., Riegler, S. & Plachter, B. ( 2003; ). Protein delivery by subviral particles of human cytomegalovirus. Gene Ther 10, 278–284.[CrossRef]
    [Google Scholar]
  26. Pietropaolo, R. L. & Compton, T. ( 1997; ). Direct interaction between human cytomegalovirus glycoprotein B and cellular annexin II. J Virol 71, 9803–9807.
    [Google Scholar]
  27. Raftery, M. J., Schwab, M., Eibert, S. M., Samstag, Y., Walczak, H. & Schönrich, G. ( 2001; ). Targeting the function of mature dendritic cells of human cytomegalovirus: a multilayered viral defense strategy. Immunity 15, 997–1009.[CrossRef]
    [Google Scholar]
  28. Rescigno, M., Citterio, S., Thèry, C., Rittig, M., Medaglini, D., Pozzi, G., Amigorena, S. & Ricciardi-Castagnoli, P. ( 1998; ). Bacteria-induced neo-biosynthesis, stabilization, and surface expression of functional class I molecules in mouse dendritic cells. Proc Natl Acad Sci U S A 95, 5229–5234.[CrossRef]
    [Google Scholar]
  29. Revello, M. G., Percivalle, E., Arbustini, E., Pardi, R., Sozzani, S. & Gerna, G. ( 1998; ). In vitro generation of human cytomegalovirus pp65 antigenemia, viremia, and leukoDNAemia. J Clin Invest 101, 2686–2692.[CrossRef]
    [Google Scholar]
  30. Revello, M. G., Baldanti, F., Percivalle, E., Sarasini, A., De-Giuli, L., Genini, E., Lilleri, D., Labò, N. & Gerna, G. ( 2001; ). In vitro selection of human cytomegalovirus variants unable to transfer virus and virus products from infected cells to polymorphonuclear leucocytes and to grow in endothelial cells. J Gen Virol 82, 1429–1438.
    [Google Scholar]
  31. Riegler, S., Hebart, H., Einsele, H., Brossart, P., Jahn, G. & Sinzger, C. ( 2000; ). Monocyte-derived dendritic cells are permissive to the complete replicative cycle of human cytomegalovirus. J Gen Virol 81, 393–399.
    [Google Scholar]
  32. Sallusto, F. & Lanzavecchia, A. ( 1994; ). Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin-4 and downregulated by tumor necrosis factor α. J Exp Med 179, 1109–1118.[CrossRef]
    [Google Scholar]
  33. Sallusto, F., Cella, M., Danieli, C. & Lanzavecchia, A. ( 1995; ). Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182, 389–400.[CrossRef]
    [Google Scholar]
  34. Sinzger, C., Kahl, M., Laib, K., Klingel, K., Rieger, P., Plachter, B. & Jahn, G. ( 2000; ). Tropism of human cytomegalovirus for endothelial cells is determined by a post-entry step dependent on efficient translocation to the nucleus. J Gen Virol 81, 3021–3035.
    [Google Scholar]
  35. Taylor-Wiedeman, J., Sissons, J. G. P., Borysiewicz, L. K. & Sinclair, J. H. ( 1991; ). Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol 72, 2059–2064.[CrossRef]
    [Google Scholar]
  36. Waldman, W. J., Knight, D. A., Huang, E. H. & Sedmak, D. D. ( 1995; ). Bidirectional transmission of infectious cytomegalovirus between monocytes and vascular endothelial cells: an in vitro model. J Infect Dis 171, 263–272.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80474-0
Loading
/content/journal/jgv/10.1099/vir.0.80474-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error