1887

Abstract

Prion diseases involve conversion of host-encoded cellular prion protein (PrP) to a disease-related isoform (PrP). Using recombinant human -PrP, a panel of monoclonal antibodies was produced that efficiently immunoprecipitated native PrP and recognized epitopes between residues 93–105, indicating for the first time that this region is exposed in both human vCJD and mouse RML prions. In contrast, monoclonal antibodies raised to human -PrP were more efficient in immunoprecipitating PrP than PrP, and some of them could also distinguish between different PrP glycoforms. Using these monoclonal antibodies, the physical association of PrP glycoforms was studied in normal brain and in the brains of humans and mice with prion disease. It was shown that while PrP glycoforms can be selectively immunoprecipitated, the differentially glycosylated molecules of native PrP are closely associated and always immunoprecipitate together. Furthermore, the ratio of glycoforms comprising immunoprecipitated native PrP from diverse prion strains was similar to those observed on denaturing Western blots. These studies are consistent with the view that the proportion of each glycoform incorporated into PrP is probably controlled in a strain-specific manner and that each PrP particle contains a mixture of glycoforms.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80375-0
2005-09-01
2024-09-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/9/vir862635.html?itemId=/content/journal/jgv/10.1099/vir.0.80375-0&mimeType=html&fmt=ahah

References

  1. Bell J. E., Ironside J. W. 1997; Principles and practice of ‘high risk’ brain banking. Neuropathol Appl Neurobiol 23:281–288 [CrossRef]
    [Google Scholar]
  2. Bessen R. A., Marsh R. F. 1992; Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J Virol 66:2096–2101
    [Google Scholar]
  3. Bruce M. E., Will R. G., Ironside J. W. 10 other authors 1997; Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature 389:498–501 [CrossRef]
    [Google Scholar]
  4. Bueler H., Aguzzi A., Sailer A., Greiner R. A., Autenried P., Aguet M., Weissmann C. 1993; Mice devoid of PrP are resistant to scrapie. Cell 73:1339–1347 [CrossRef]
    [Google Scholar]
  5. Chen S. G., Teplow D. B., Parchi P., Teller J. K., Gambetti P., Autilio-Gambetti L. 1995; Truncated forms of the human prion protein in normal brain and in prion diseases. J Biol Chem 270:19173–19180 [CrossRef]
    [Google Scholar]
  6. Collinge J. 2001; Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24:519–550 [CrossRef]
    [Google Scholar]
  7. Collinge J., Sidle K. C. L., Meads J., Ironside J., Hill A. F. 1996; Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383:685–690 [CrossRef]
    [Google Scholar]
  8. Collinge J., Hill A. F., Sidle K. C. L., Ironside J. 1997; Biochemical typing of scrapie strains. Nature 386:564 [CrossRef]
    [Google Scholar]
  9. Endo T., Groth D., Prusiner S. B., Kobata A. 1989; Diversity of oligosaccharide structures linked to asparagines of the scrapie prion protein. Biochemistry 28:8380–8388 [CrossRef]
    [Google Scholar]
  10. Fischer M. B., Roeckl C., Parizek P., Schwarz H. P., Aguzzi A. 2000; Binding of disease-associated prion protein to plasminogen. Nature 408:479–483 [CrossRef]
    [Google Scholar]
  11. Hill A. F., Collinge J. 2002; Species-barrier-independent prion replication in apparently resistant species. APMIS 110:44–53 [CrossRef]
    [Google Scholar]
  12. Hill A. F., Desbruslais M., Joiner S., Sidle K. C. L., Gowland I., Collinge J., Doey L. J., Lantos P. 1997; The same prion strain causes vCJD and BSE. Nature 389:448–450 [CrossRef]
    [Google Scholar]
  13. Hornemann S., Glockshuber R. 1998; A scrapie-like unfolding intermediate of the prion protein domain PrP(121-231) induced by acidic pH. Proc Natl Acad Sci U S A 95:6010–6014 [CrossRef]
    [Google Scholar]
  14. Hosszu L. L. P., Baxter N. J., Jackson G. S., Power A., Clarke A. R., Waltho J. P., Craven C. J., Collinge J. 1999; Structural mobility of the human prion protein probed by backbone hydrogen exchange. Nat Struct Biol 6:740–743 [CrossRef]
    [Google Scholar]
  15. Jackson G. S., Hill A. F., Joseph C., Hosszu L. L. P., Power A., Waltho J. P., Clarke A. R., Collinge J. 1999a; Multiple folding pathways for heterologously expressed human prion protein. Biochim Biophys Acta 14311–13 [CrossRef]
    [Google Scholar]
  16. Jackson G. S., Hosszu L. L. P., Power A. & 7 other authors (1999b). Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283:1935–1937 [CrossRef]
    [Google Scholar]
  17. James T. L., Liu H., Ulyanov N. B. 8 other authors 1997; Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc Natl Acad Sci U S A 94:10086–10091 [CrossRef]
    [Google Scholar]
  18. Kanyo Z. F., Pan K. M., Williamson R. A., Burton D. R., Prusiner S. B., Fletterick R. J., Cohen F. E. 1999; Antibody binding defines a structure for an epitope that participates in the PrPC→PrPSc conformational change. J Mol Biol 293:855–863 [CrossRef]
    [Google Scholar]
  19. Khalili-Shirazi A., Quaratino S., Londei M., Summers L., Tayebi M., Clarke A. R., Hawke S. H., Jackson G. S., Collinge J. 2005; Protein conformation significantly influences immune responses to prion protein. J Immunol 174:3256–3263 [CrossRef]
    [Google Scholar]
  20. Korth C., Stierli B., Streit P. 14 other authors 1997; Prion (PrPSc)-specific epitope defined by a monoclonal antibody. Nature 390:74–77 [CrossRef]
    [Google Scholar]
  21. Krasemann S., Groschup M. H., Harmeyer S., Hunsmann G., Bodemer W. 1996; Generation of monoclonal antibodies against human prion proteins in PrP0/0 mice. Mol Med 2:725–734
    [Google Scholar]
  22. Leclerc E., Peretz D., Ball H., Sakurai H., Legname G., Serban A., Prusiner S. B., Burton D. R., Williamson R. A. 2001; Immobilized prion protein undergoes spontaneous rearrangement to a conformation having features in common with the infectious form. EMBO J 20:1547–1554 [CrossRef]
    [Google Scholar]
  23. Lloyd S. E., Linehan J. M., Desbruslais M., Joiner S., Buckell J., Brandner S., Wadsworth J. D., Collinge J. 2004; Characterization of two distinct prion strains derived from bovine spongiform encephalopathy transmissions to inbred mice. J Gen Virol 85:2471–2478 [CrossRef]
    [Google Scholar]
  24. Nakamura N., Miyamoto K., Shimokawa M., Nishida N., Mohri S., Kitamoto T., Horiuchi H., Furusawa S., Matsuda H. 2003; Generation of antibodies against prion protein by scrapie-infected cell immunization of PrP0/0 mice. Hybrid Hybridomics 22:263–266 [CrossRef]
    [Google Scholar]
  25. Pan K.-M., Baldwin M. A., Nguyen J. 8 other authors 1993; Conversion of α -helices into β -sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A 90:10962–10966 [CrossRef]
    [Google Scholar]
  26. Parchi P., Castellani R., Capellari S. 9 other authors 1996; Molecular basis of phenotypic variability in sporadic Creutzfeldt-Jakob disease. Ann Neurol 39:767–778 [CrossRef]
    [Google Scholar]
  27. Peretz D., Williamson R. A., Matsunaga Y. 9 other authors 1997; A conformational transition at the N terminus of the prion protein features in formation of the scrapie isoform. J Mol Biol 273:614–622 [CrossRef]
    [Google Scholar]
  28. Prusiner S. B. 1991; Molecular biology of prion diseases. Science 252:1515–1522 [CrossRef]
    [Google Scholar]
  29. Riek R., Hornemann S., Wider G., Billeter M., Glockshuber R., Wuthrich K. 1996; NMR structure of the mouse prion protein domain PrP (121-231). Nature 382:180–182 [CrossRef]
    [Google Scholar]
  30. Rogers M., Serban D., Gyuris T., Scott M., Torchia T., Prusiner S. B. 1991; Epitope mapping of the Syrian hamster prion protein utilizing chimeric and mutant genes in a vaccinia virus expression system. J Immunol 147:3568–3574
    [Google Scholar]
  31. Shyng S.-L., Huber M. T., Harris D. A. 1993; A prion protein cycles between the cell surface and an endocytic compartment in cultured neuroblastoma cells. J Biol Chem 268:15922–15928
    [Google Scholar]
  32. Stahl N., Borchelt D. R., Hsiao K., Prusiner S. B. 1987; Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51:229–240 [CrossRef]
    [Google Scholar]
  33. Stahl N., Baldwin M. A., Teplow D. B., Hood L., Gibson B. W., Burlingame A. L., Prusiner S. B. 1993; Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32:1991–2002 [CrossRef]
    [Google Scholar]
  34. Swietnicki W., Petersen R., Gambetti P., Surewicz W. K. 1997; pH-dependent stability and conformation of the recombinant human prion protein PrP(90-231). J Biol Chem 272:27517–27520 [CrossRef]
    [Google Scholar]
  35. Telling G. C., Parchi P., DeArmond S. J. 7 other authors 1996; Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274:2079–2082 [CrossRef]
    [Google Scholar]
  36. Wadsworth J. D. F., Hill A. F., Joiner S., Jackson G. S., Clarke A. R., Collinge J. 1999; Strain-specific prion-protein conformation determined by metal ions. Nat Cell Biol 1:55–59 [CrossRef]
    [Google Scholar]
  37. Wadsworth J. D., Hill A. F., Beck J. A., Collinge J. 2003; Molecular and clinical classification of human prion disease. Br Med Bull 66:241–254 [CrossRef]
    [Google Scholar]
  38. Williamson R. A., Peretz D., Pinilla C., Ball H., Bastidas R. B., Rozenshteyn R., Houghten R. A., Prusiner S. B., Burton D. R. 1998; Mapping the prion protein using recombinant antibodies. J Virol 72:9413–9418
    [Google Scholar]
  39. Zahn R., Liu A. Z., Lührs T. 7 other authors 2000; NMR solution structure of the human prion protein. Proc Natl Acad Sci U S A 97:145–150 [CrossRef]
    [Google Scholar]
  40. Zanusso G., Liu D., Ferrari S. 11 other authors 1998; Prion protein expression in different species: analysis with a panel of new mAbs. Proc Natl Acad Sci U S A 95:8812–8816 [CrossRef]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.80375-0
Loading
/content/journal/jgv/10.1099/vir.0.80375-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error