1887

Abstract

It was recently found that the (DHBV) reverse transcriptase is primarily a non-encapsidated cytoplasmic molecule that is rapidly translated and has a very short half-life. Here, a non-encapsidated reverse transcriptase from the human (HBV) was characterized. HBV polymerase accumulated in the cytoplasm in a manner similar to non-encapsidated DHBV polymerase. However, the HBV polymerase accumulated at an apparently lower concentration and had a longer half-life than the DHBV enzyme, and it displayed no evidence of the post-translational modifications observed for DHBV. Unlike the DHBV polymerase, immunofluorescence detection of the HBV polymerase in cells was suppressed by the core protein, and this suppression occurred independently of encapsidation. This implies an interaction between the polymerase and core in addition to encapsidation, but the polymerase and core did not co-immunoprecipitate, so the interaction might not be direct. These data indicate that production of cytoplasmic, non-encapsidated polymerase is conserved among the hepadnaviral genera. Furthermore, conservation of the cytoplasmic form of the polymerase suggests that it might have function(s) in virus replication or pathology beyond copying the viral genome.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80297-0
2004-11-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/11/vir853353.html?itemId=/content/journal/jgv/10.1099/vir.0.80297-0&mimeType=html&fmt=ahah

References

  1. Bartenschlager R., Schaller H. 1992; Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA. EMBO J 11:3413–3420
    [Google Scholar]
  2. Bartenschlager R., Junker-Niepmann M., Schaller H. 1990; The P gene product of hepatitis B virus is required as a structural component for genomic RNA encapsidation. J Virol 64:5324–5332
    [Google Scholar]
  3. Bottcher B., Wynne S. A., Crowther R. A. 1997; Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386:88–91 [CrossRef]
    [Google Scholar]
  4. Bruss V., Ganem D. 1991; The role of envelope proteins in hepatitis B virus assembly. Proc Natl Acad Sci U S A 88:1059–1063 [CrossRef]
    [Google Scholar]
  5. Chang L. J., Pryciak P., Ganem D., Varmus H. E. 1989; Biosynthesis of the reverse transcriptase of hepatitis B viruses involves de novo translational initiation not ribosomal frameshifting. Nature 337:364–368 [CrossRef]
    [Google Scholar]
  6. Condreay L. D., Aldrich C. E., Coates L., Mason W. S., Wu T. T. 1990; Efficient duck hepatitis B virus production by an avian liver tumor cell line. J Virol 64:3249–3258
    [Google Scholar]
  7. Crowther R. A., Kiselev N. A., Bottcher B., Berriman J. A., Borisova G. P., Ose V., Pumpens P. 1994; Three-dimensional structure of hepatitis B virus core particles determined by electron cryomycroscopy. Cell 77:943–950 [CrossRef]
    [Google Scholar]
  8. Feitelson M. A., Millman I., Duncan G. D., Blumberg B. S. 1988; Presence of antibodies to the polymerase gene product(s) of hepatitis B and woodchuck hepatitis virus in natural and experimental infections. J Med Virol 24:121–136 [CrossRef]
    [Google Scholar]
  9. Fouillot N., Rossignol J. M. 1996; Translational stop codons in the precore sequence of hepatitis B virus pre-C RNA allow translation reinitiation at downstream AUGs. J Gen Virol 77:1123–1127 [CrossRef]
    [Google Scholar]
  10. Ganem D., Schneider R. J. 2001; In Fields Virology . , 4th edn. pp  2923–2969 Edited by Knipe D. M., Howley P., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E. Philadelphia: Lippincott Williams & Wilkins;
  11. Hirsch R. C., Lavine J. E., Chang L. J., Varmus H. E., Ganem D. 1990; Polymerase gene products of hepatitis B viruses are required for genomic RNA packaging as well as for reverse transcription. Nature 344:552–555 [CrossRef]
    [Google Scholar]
  12. Hollinger F. B., Liang T. J. 2001; In Fields Virology . , 4th edn. pp  2971–3036 Edited by Knipe D. M., Howley P., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E. Philadelphia: Lippincott Williams & Wilkins;
  13. Hwang W. L., Su T. S. 1999; The encapsidation signal of the hepatitis B virus facilitates preC AUG recognition resulting in inefficient translation of the downstream genes. J Gen Virol 80:1769–1776
    [Google Scholar]
  14. Junker-Niepmann M., Bartenschlager R., Schaller H. 1990; A short cis-acting sequence is required for hepatitis B virus pregenome encapsidation and sufficient for packaging of foreign RNA. EMBO J 9:3389–3396
    [Google Scholar]
  15. Kann M., Kochel H. G., Uy A., Thomssen R. 1993; Diagnostic significance of antibodies to hepatitis B virus polymerase in acutely and chronically HBV-infected individuals. J Med Virol 40:285–290 [CrossRef]
    [Google Scholar]
  16. Kladney R. D., Bulla G. A., Guo L., Mason A. L., Tollefson A. E., Simon D. J., Koutoubi Z., Fimmel C. J. 2000; GP73, a novel Golgi-localized protein upregulated by viral infection. Gene 249:53–65 [CrossRef]
    [Google Scholar]
  17. Lin C. G., Lo S. J. 1992; Evidence for involvement of a ribosomal leaky scanning mechanism in the translation of the hepatitis B virus pol gene from the viral pregenome RNA. Virology 188:342–352 [CrossRef]
    [Google Scholar]
  18. Lott L., Beames B., Notvall L., Lanford R. E. 2000; Interaction between hepatitis B virus core protein and reverse transcriptase. J Virol 74:11479–11489 [CrossRef]
    [Google Scholar]
  19. McGarvey M. J., Goldin R. D., Karayiannis P., Thomas H. C. 1996; The expression of hepatitis B virus polymerase in hepatocytes during chronic HBV infection. J Viral Hepat 3:67–73 [CrossRef]
    [Google Scholar]
  20. Milich D. R., Jones J. E., Hughes J. L., Price J., Raney A. K., McLachlan A. 1990; Is a function of the secreted hepatitis B e antigen to induce immunologic tolerence in utero?. Proc Natl Acad Sci U S A 87:6599–6603 [CrossRef]
    [Google Scholar]
  21. Ou J. H., Bao H., Shih C., Tahara S. M. 1990; Preferred translation of human hepatitis B virus polymerase from core protein- but not from precore protein-specific transcript. J Virol 64:4578–4581
    [Google Scholar]
  22. Pollack J. R., Ganem D. 1993; An RNA stem-loop structure directs hepatitis B virus genomic RNA encapsidation. J Virol 67:3254–3263
    [Google Scholar]
  23. Rehermann B., Fowler P., Sidney J., Person J., Redeker A., Brown M., Moss B., Sette A., Chisari F. V. 1995; The cytotoxic T lymphocyte response to multiple hepatitis B virus polymerase epitopes during and after acute viral hepatitis. J Exp Med 181:1047–1058 [CrossRef]
    [Google Scholar]
  24. Schlicht H. J., Radziwill G., Schaller H. 1989; Synthesis and encapsidation of duck hepatitis B virus reverse transcriptase do not require formation of core-polymerase fusion proteins. Cell 56:85–92 [CrossRef]
    [Google Scholar]
  25. Sells M. A., Chen M. L., Acs G. 1987; Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA. Proc Natl Acad Sci U S A 84:1005–1009 [CrossRef]
    [Google Scholar]
  26. Staprans S., Loeb D. D., Ganem D. 1991; Mutations affecting hepadnavirus plus-strand DNA synthesis dissociate primer cleavage from translocation and reveal the origin of linear viral DNA. J Virol 65:1255–1262
    [Google Scholar]
  27. Summers J., Mason W. S. 1982; Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate. Cell 29:403–415 [CrossRef]
    [Google Scholar]
  28. Tavis J. E., Massey B., Gong Y. 1998; The duck hepatitis B virus polymerase is activated by its RNA packaging signal, ε . J Virol 72:5789–5796
    [Google Scholar]
  29. Weimer T., Schodel F., Jung M. C., Pape G. R., Alberti A., Fattovich G., Beljaars H., van Eerd P. M., Will H. 1990; Antibodies to the RNase H domain of hepatitis B virus P protein are associated with ongoing viral replication. J Virol 64:5665–5668
    [Google Scholar]
  30. Yaginuma K., Shirakata Y., Kobayashi M., Koike K. 1987; Hepatitis B virus (HBV) particles are produced in a cell culture system by transient expression of transfected HBV DNA. Proc Natl Acad Sci U S A 84:2678–2682 [CrossRef]
    [Google Scholar]
  31. Yao E., Tavis J. E. 2003; Kinetics of synthesis and turnover of the duck hepatitis B virus reverse transcriptase. J Biol Chem 278:1201–1205 [CrossRef]
    [Google Scholar]
  32. Yao E., Gong Y., Chen N., Tavis J. E. 2000; The majority of duck hepatitis B virus reverse transcriptase in cells is nonencapsidated and is bound to a cytoplasmic structure. J Virol 74:8648–8657 [CrossRef]
    [Google Scholar]
  33. Yao E., Schaller H., Tavis J. E. 2003; The duck hepatitis B virus polymerase and core proteins accumulate in different patterns from their common mRNA. Virology 311:81–88 [CrossRef]
    [Google Scholar]
  34. zu Putlitz J., Lanford R. E., Carlson R. I., Notvall L., de la Monte S. M., Wands J. R. 1999; Properties of monoclonal antibodies directed against hepatitis B virus polymerase protein. J Virol 73:4188–4196
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80297-0
Loading
/content/journal/jgv/10.1099/vir.0.80297-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error