1887

Abstract

(MYRV-1) is the type species of the newly described genus of the large virus family . The virus was isolated from a hypovirulent strain (9B21) of the chestnut blight fungus, . A previous study showed that double-shelled particles introduced to fungal spheroplasts resulted in stably infected colonies. Of the 11 double-stranded RNA genomic segments (S1–S11), the three largest (S1–S3) were sequenced previously and shown to have moderate levels of similarity to the homologous segments of mammal-pathogenic coltiviruses ( and ) and another fungus-infecting reovirus, of strain W370 (MYRV-3/RnW370). The sequences of the remaining segments (S4–S11) are reported here. All of the segments have single ORFs on their positive strands and the terminal sequences 5′-GAUCA----GCAGUCA-3′ are conserved among currently and previously sequenced segments. Oligo-cap analysis showed that the positive strands of the genomic segments are capped, whereas the negative strands are not. Similarities among the four evolutionarily related viruses include low or moderate levels of amino acid sequence identity (14·7–34·2 %) and isoelectric points among equivalent polypeptides, e.g. proteins encoded by segments S4 and S5 of the four viruses. Phylogenetic analysis indicated that MYRV-1/Cp9B21 is related more closely to MYRV-3/RnW370 than to the coltiviruses. An interesting dissimilarity is found in codon-choice pattern among the four viruses, i.e. MYRV-1/Cp9B21 segments have a lower frequency of [XYG+XYC] than corresponding segments of the other viruses, suggesting a possible adjustment of virus codon usage to their host environments.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80293-0
2004-11-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/11/vir853437.html?itemId=/content/journal/jgv/10.1099/vir.0.80293-0&mimeType=html&fmt=ahah

References

  1. Allen, T. D. & Nuss, D. L. ( 2004; ). Specific and common alterations in host gene transcript accumulation following infection of the chestnut blight fungus by mild and severe hypoviruses. J Virol 78, 4145–4155.[CrossRef]
    [Google Scholar]
  2. Allen, T. D., Dawe, A. L. & Nuss, D. L. ( 2003; ). Use of cDNA microarrays to monitor transcriptional responses of the chestnut blight fungus Cryphonectria parasitica to infection by virulence-attenuating hypoviruses. Eukaryot Cell 2, 1253–1265.[CrossRef]
    [Google Scholar]
  3. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  4. Asamizu, T., Summers, D., Motika, M. B., Anzola, J. V. & Nuss, D. L. ( 1985; ). Molecular cloning and characterization of the genome of wound tumor virus: a tumor-inducing plant reovirus. Virology 144, 398–409.[CrossRef]
    [Google Scholar]
  5. Attoui, H., Mohd Jaafar, F., Biagini, P., Cantaloube, J.-F., de Micco, P., Murphy, F. A. & de Lamballerie, X. ( 2002; ). Genus Coltivirus (family Reoviridae): genomic and morphologic characterization of Old World and New World viruses. Arch Virol 147, 533–561.[CrossRef]
    [Google Scholar]
  6. Bologna, G., Yvon, C., Duvaud, S. & Veuthey, A.-L. ( 2004; ). N-Terminal myristoylation predictions by ensembles of neural networks. Proteomics 4, 1626–1632.[CrossRef]
    [Google Scholar]
  7. Chandran, K., Parker, J. S. L., Ehrlich, M., Kirchhausen, T. & Nibert, M. L. ( 2003; ). The δ region of outer-capsid protein μ1 undergoes conformational change and release from reovirus particles during cell entry. J Virol 77, 13361–13375.[CrossRef]
    [Google Scholar]
  8. Churchill, A. C. L., Ciuffetti, L. M., Hansen, D. R., Van Etten, H. D. & Van Alfen, N. K. ( 1990; ). Transformation of the fungal pathogen Cryphonectria parasitica with a variety of heterologous plasmids. Curr Genet 17, 25–31.[CrossRef]
    [Google Scholar]
  9. Dawe, A. L. & Nuss, D. L. ( 2001; ). Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis. Annu Rev Genet 35, 1–29.[CrossRef]
    [Google Scholar]
  10. Dawe, A. L., McMains, V. C., Panglao, M., Kasahara, S., Chen, B. & Nuss, D. L. ( 2003; ). An ordered collection of expressed sequences from Cryphonectria parasitica and evidence of genomic microsynteny with Neurospora crassa and Magnaporthe grisea. Microbiology 149, 2373–2384.[CrossRef]
    [Google Scholar]
  11. Enebak, S. A. ( 1992; ). Characterization of dsRNA-containing strains of Cryphonectria parasitica recovered from the central Appalachian. PhD thesis, West Virginia University, WV, USA.
  12. Enebak, S. A., Hillman, B. I. & MacDonald, W. L. ( 1994; ). A hypovirulent isolate of Cryphonectria parasitica with multiple, genetically unique dsRNA segments. Mol Plant Microbe Interact 7, 590–595.[CrossRef]
    [Google Scholar]
  13. Estes, M. K. ( 2001; ). Rotaviruses and their replication. In Fields Virology, 4th edn, vol. 2, pp. 1747–1785. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  14. Grimes, J. M., Burroughs, J. N., Gouet, P., Diprose, J. M., Malby, R., Ziéntara, S., Mertens, P. P. C. & Stuart, D. I. ( 1998; ). The atomic structure of the bluetongue virus core. Nature 395, 470–478.[CrossRef]
    [Google Scholar]
  15. Hillman, B. I. & Suzuki, N. ( 2004; ). Viruses in the chestnut blight fungus. Adv Virus Res (in press).
    [Google Scholar]
  16. Hillman, B. I., Supyani, S., Kondo, H. & Suzuki, N. ( 2004; ). A reovirus of the fungus Cryphonectria parasitica that is infectious as particles and related to the Coltivirus genus of animal pathogens. J Virol 78, 892–898.[CrossRef]
    [Google Scholar]
  17. Ikeda, K., Nagaoka, S., Winkler, S., Kotani, K., Yagi, H., Nakanishi, K., Miyajima, S., Kobayashi, J. & Mori, H. ( 2001; ). Molecular characterization of Bombyx mori cytoplasmic polyhedrosis virus genome segment 4. J Virol 75, 988–995.[CrossRef]
    [Google Scholar]
  18. Isogai, M., Uyeda, I. & Lee, B. ( 1998; ). Detection and assignment of proteins encoded by rice black streaked dwarf fijivirus S7, S8, S9 and S10. J Gen Virol 79, 1487–1494.
    [Google Scholar]
  19. Kanematsu, S., Arakawa, M., Oikawa, Y. & 10 other authors ( 2004; ). A reovirus causes hypovirulence of Rosellinia necatrix. Phytopathology 94, 561–568.[CrossRef]
    [Google Scholar]
  20. Kudo, H., Uyeda, I. & Shikata, E. ( 1991; ). Viruses in the Phytoreovirus genus of the Reoviridae family have the same conserved terminal sequences. J Gen Virol 72, 2857–2866.[CrossRef]
    [Google Scholar]
  21. Lambden, P. R., Cooke, S. J., Caul, E. O. & Clarke, I. N. ( 1992; ). Cloning of noncultivatable human rotavirus by single primer amplification. J Virol 66, 1817–1822.
    [Google Scholar]
  22. Lawton, J. A., Estes, M. K. & Prasad, B. V. V. ( 1997a; ). Three-dimensional visualization of mRNA release from actively transcribing rotavirus particles. Nat Struct Biol 4, 118–121.[CrossRef]
    [Google Scholar]
  23. Lawton, J. A., Zeng, C. Q.-Y., Mukherjee, S. K., Cohen, J., Estes, M. K. & Prasad, B. V. V. ( 1997b; ). Three-dimensional structural analysis of recombinant rotavirus-like particles with intact and amino-terminal-deleted VP2: implications for the architecture of the VP2 capsid layer. J Virol 71, 7353–7360.
    [Google Scholar]
  24. Liemann, S., Chandran, K., Baker, T. S., Nibert, M. L. & Harrison, S. C. ( 2002; ). Structure of the reovirus membrane-penetration protein, μ1, in a complex with its protector protein, σ3. Cell 108, 283–295.[CrossRef]
    [Google Scholar]
  25. Lipman, D. J. & Pearson, W. R. ( 1985; ). Rapid and sensitive protein similarity searches. Science 227, 1435–1441.[CrossRef]
    [Google Scholar]
  26. Maruyama, K. & Sugano, S. ( 1994; ). Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171–174.[CrossRef]
    [Google Scholar]
  27. Maurer-Stroh, S., Gouda, M., Novatchkova, M., Schleiffer, A., Schneider, G., Sirota, F. L., Wildpaner, M., Hayashi, N. & Eisenhaber, F. ( 2004; ). MYRbase: analysis of genome-wide glycine myristoylation enlarges the functional spectrum of eukaryotic myristoylated proteins. Genome Biol 5, R21.[CrossRef]
    [Google Scholar]
  28. McQualter, R. B., Burns, P., Smith, G. R., Dale, J. L. & Harding, R. M. ( 2003; ). Molecular analysis of Fiji disease virus genome segments 5, 6, 8 and 10. Arch Virol 149, 713–721.
    [Google Scholar]
  29. Mertens, P. P. C., Arella, M., Attoui, H. & 41 other authors ( 2000; ). Family Reoviridae. In Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses, pp. 395–480. Edited by M. H. V. van Regenmortel, C. M. Fauquet, D. H. L. Bishop, E. B. Carstens, M. K. Estes, S. M. Lemon, J. Maniloff, M. A. Mayo, D. J. McGeoch, C. R. Pringle & R. B. Wickner. San Diego: Academic Press.
  30. Mertens, P. P. C., Hillman, B. I. & Suzuki, N. ( 2004; ). Genus Mycoreovirus. In Virus Taxonomy: Eighth Report of the International Committee for the Taxonomy of Viruses. Edited by C. M. Fauquet et al. San Diego: Academic Press (in press).
  31. Nakagawa, A., Miyazaki, N., Taka, J. & 9 other authors ( 2003; ). The atomic structure of Rice dwarf virus reveals the self-assembly mechanism of component proteins. Structure (Camb) 11, 1227–1238.[CrossRef]
    [Google Scholar]
  32. Nakashima, N., Koizumi, M., Watanabe, H. & Noda, H. ( 1996; ). Complete nucleotide sequence of the Nilaparvata lugens reovirus: a putative member of the genus Fijivirus. J Gen Virol 77, 139–146.[CrossRef]
    [Google Scholar]
  33. Nibert, M. L. & Schiff, L. A. ( 2001; ). Reoviruses and their replication. In Fields Virology, 4th edn, vol. 2, pp. 1679–1729. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  34. Nibert, M. L. & Kim, J. ( 2004; ). Conserved sequence motifs for nucleoside triphosphate binding unique to turreted Reoviridae members and coltiviruses. J Virol 78, 5528–5530.[CrossRef]
    [Google Scholar]
  35. Nibert, M. L., Schiff, L. A. & Fields, B. N. ( 1991; ). Mammalian reoviruses contain a myristoylated structural protein. J Virol 65, 1960–1967.
    [Google Scholar]
  36. Odegard, A. L., Chandran, K., Zhang, X., Parker, J. S. L., Baker, T. S. & Nibert, M. L. ( 2004; ). Putative autocleavage of outer capsid protein μ1, allowing release of myristoylated peptide μ1N during particle uncoating, is critical for cell entry by reovirus. J Virol 78, 8732–8745.[CrossRef]
    [Google Scholar]
  37. Oliver, J. L., Marín, A. & Martínez-Zapater, J. M. ( 1990; ). Chloroplast genes transferred to the nuclear plant genome have adjusted to nuclear base composition and codon usage. Nucleic Acids Res 18, 65–73.[CrossRef]
    [Google Scholar]
  38. Osaki, H., Wei, C. Z., Arakawa, M., Iwanami, T., Nomura, K., Matsumoto, N. & Ohtsu, Y. ( 2002; ). Nucleotide sequences of double-stranded RNA segments from a hypovirulent strain of the white root rot fungus Rosellinia necatrix: possibly of the first member of the Reoviridae from fungus. Virus Genes 25, 101–107.[CrossRef]
    [Google Scholar]
  39. Pearson, W. R. & Lipman, D. J. ( 1988; ). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85, 2444–2448.[CrossRef]
    [Google Scholar]
  40. Polashock, J. J. & Hillman, B. I. ( 1994; ). A small mitochondrial double-stranded (ds) RNA element associated with a hypovirulent strain of the chestnut blight fungus and ancestrally related to yeast cytoplasmic T and W dsRNAs. Proc Natl Acad Sci U S A 91, 8680–8684.[CrossRef]
    [Google Scholar]
  41. Rao, S., Carner, G. R., Scott, S. W., Omura, T. & Hagiwara, K. ( 2003; ). Comparison of the amino acid sequences of RNA-dependent RNA polymerases of cypoviruses in the family Reoviridae. Arch Virol 148, 209–219.[CrossRef]
    [Google Scholar]
  42. Reinisch, K. M., Nibert, M. L. & Harrison, S. C. ( 2000; ). Structure of the reovirus core at 3·6 Å resolution. Nature 404, 960–967.[CrossRef]
    [Google Scholar]
  43. Roy, P. ( 2001; ). Orbiviruses. In Fields Virology, 4th edn, vol. 2, pp. 1835–1869. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  44. Stuart, D. I., Gouet, P., Grimes, J., Malby, R., Diprose, J., Ziéntara, S., Burroughs, J. N. & Mertens, P. P. C. ( 1998; ). Structural studies of orbivirus particles. Arch Virol Suppl 14, 235–250.
    [Google Scholar]
  45. Suzuki, N. ( 1995; ). Molecular analysis of the rice dwarf virus genome. Semin Virol 6, 89–95.[CrossRef]
    [Google Scholar]
  46. Suzuki, N., Watanabe, Y., Kusano, T. & Kitagawa, Y. ( 1990; ). Sequence analysis of rice dwarf phytoreovirus genome segments S4, S5, and S6: comparison with the equivalent wound tumor virus segments. Virology 179, 446–454.[CrossRef]
    [Google Scholar]
  47. Suzuki, N., Maruyama, K., Moriyama, M. & Nuss, D. L. ( 2003; ). Hypovirus papain-like protease p29 functions in trans to enhance viral double-stranded RNA accumulation and vertical transmission. J Virol 77, 11697–11707.[CrossRef]
    [Google Scholar]
  48. Tao, Y., Farsetta, D. L., Nibert, M. L. & Harrison, S. C. ( 2002; ). RNA synthesis in a cage – structural studies of reovirus polymerase λ3. Cell 111, 733–745.[CrossRef]
    [Google Scholar]
  49. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  50. Tillotson, L. & Shatkin, A. J. ( 1992; ). Reovirus polypeptide σ3 and N-terminal myristoylation of polypeptide μ1 are required for site-specific cleavage to μ1C in transfected cells. J Virol 66, 2180–2186.
    [Google Scholar]
  51. Wei, C. Z., Osaki, H., Iwanami, T., Matsumoto, N. & Ohtsu, Y. ( 2003; ). Molecular characterization of dsRNA segments 2 and 5 and electron microscopy of a novel reovirus from a hypovirulent isolate, W370, of the plant pathogen Rosellinia necatrix. J Gen Virol 84, 2431–2437.[CrossRef]
    [Google Scholar]
  52. Wei, C. Z., Osaki, H., Iwanami, T., Matsumoto, N. & Ohtsu, Y. ( 2004; ). Complete nucleotide sequences of genome segments 1 and 3 of Rosellinia anti-rot virus in the family Reoviridae. Arch Virol 149, 773–777.[CrossRef]
    [Google Scholar]
  53. Xu, Z., Anzola, J. V., Nalin, C. M. & Nuss, D. L. ( 1989; ). The 3′-terminal sequence of a wound tumor virus transcript can influence conformational and functional properties associated with the 5′-terminus. Virology 170, 511–522.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80293-0
Loading
/content/journal/jgv/10.1099/vir.0.80293-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error