1887

Abstract

Two nucleotide differences in the P/C/V and M genes between B95a cell- and Vero cell-isolated wild-type measles viruses (MV) have previously been found from the same patient. The nucleotide difference in the P/C/V gene resulted in an amino acid difference (M175I) in the P and V proteins and a 19 aa deletion in the C protein. The nucleotide difference in the M gene resulted in an amino acid difference (P64H) in the M protein. To verify this result and to examine further whether the amino acid difference or truncation is important for MV cell tropism, recombinant MV strains containing one of the two nucleotide substitutions, or both, were generated. It was found that the P64H substitution in the M protein was important for efficient virus growth and dissemination in Vero cells and that the M175I substitution in the P and V protein or truncation of the C protein was required for optimal growth.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80287-0
2004-10-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/10/vir853001.html?itemId=/content/journal/jgv/10.1099/vir.0.80287-0&mimeType=html&fmt=ahah

References

  1. Andres, O., Obojes, K., Kim, K. S., ter Meulen, V. & Schneider-Schaulies, J. ( 2003; ). CD46- and CD150-independent endothelial cell infection with wild-type measles virus. J Gen Virol 84, 1189–1197.[CrossRef]
    [Google Scholar]
  2. Dörig, R. E., Marcil, A., Chopra, A. & Richardson, C. D. ( 1993; ). The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305.[CrossRef]
    [Google Scholar]
  3. Erlenhoefer, C., Wurzer, W. J., Löffler, S., Schneider-Schaulies, S., ter Meulen, V. & Schneider-Schaulies, J. ( 2001; ). CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. J Virol 75, 4499–4505.[CrossRef]
    [Google Scholar]
  4. Griffin, D. E. ( 2001; ). Measles virus. In Fields Virology, 4th edn, pp. 1401–1441. Edited by D. M. Knipe, P. M. Howley, D. E. Griffin, M. A. Martin, R. A. Lamb, B. Roizman & S. E. Straus. Philadelphia: Lippincott, Williams & Wilkins.
  5. Hashimoto, K., Ono, N., Tatsuo, H., Minagawa, H., Takeda, M., Takeuchi, K. & Yanagi, Y. ( 2002; ). SLAM (CD150)-independent measles virus entry as revealed by recombinant virus expressing green fluorescent protein. J Virol 76, 6743–6749.[CrossRef]
    [Google Scholar]
  6. Horikami, S. M. & Moyer, S. A. ( 1995; ). Structure, transcription, and replication of measles virus. In Measles Virus, pp. 35–50. Edited by V. ter Meulen & M. A. Billeter. Berlin: Springer.
  7. Hsu, E. C., Iorio, C., Sarangi, F., Khine, A. A. & Richardson, C. D. ( 2001; ). CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 279, 9–21.[CrossRef]
    [Google Scholar]
  8. Kobune, F., Sakata, H. & Sugiura, A. ( 1990; ). Marmoset lymphoblastoid cells as a sensitive host for isolation of measles virus. J Virol 64, 700–705.
    [Google Scholar]
  9. Kobune, F., Takahashi, H., Terao, K. & 7 other authors ( 1996; ). Nonhuman primate models of measles. Lab Anim Sci 46, 315–320.
    [Google Scholar]
  10. Kouomou, D. W. & Wild, T. F. ( 2002; ). Adaptation of wild-type measles virus to tissue culture. J Virol 76, 1505–1509.[CrossRef]
    [Google Scholar]
  11. Lamb, R. A. & Kolakofsky, D. ( 2001; ). Paramyxoviridae: the viruses and their replication. In Fields Virology, 4th edn, pp. 1305–1340. Edited by D. M. Knipe, P. M. Howley, D. E. Griffin, M. A. Martin, R. A. Lamb, B. Roizman & S. E. Straus. Philadelphia: Lippincott, Williams & Wilkins.
  12. Manchester, M., Eto, D. S., Valsamakis, A., Liton, P. B., Fernandez-Muñoz, R., Rota, P. A., Bellini, W. J., Forthal, D. N. & Oldstone, M. B. A. ( 2000; ). Clinical isolates of measles virus use CD46 as a cellular receptor. J Virol 74, 3967–3974.[CrossRef]
    [Google Scholar]
  13. Manchester, M., Smith, K. A., Eto, D. S., Perkin, H. B. & Torbett, B. E. ( 2002; ). Targeting and hematopoietic suppression of human CD34+ cells by measles virus. J Virol 76, 6636–6642.[CrossRef]
    [Google Scholar]
  14. Massé, N., Barrett, T., Muller, C. P., Wild, T. F. & Buckland, R. ( 2002; ). Identification of a second major site for CD46 binding in the hemagglutinin protein from a laboratory strain of measles virus (MV): potential consequences for wild-type MV infection. J Virol 76, 13034–13038.[CrossRef]
    [Google Scholar]
  15. McQuaid, S. & Cosby, S. L. ( 2002; ). An immunohistochemical study of the distribution of the measles virus receptors, CD46 and SLAM, in normal human tissues and subacute sclerosing panencephalitis. Lab Invest 82, 403–409.[CrossRef]
    [Google Scholar]
  16. Mrkic, B., Odermatt, B., Klein, M. A., Billeter, M. A., Pavlovic, J. & Cattaneo, R. ( 2000; ). Lymphatic dissemination and comparative pathology of recombinant measles viruses in genetically modified mice. J Virol 74, 1364–1372.[CrossRef]
    [Google Scholar]
  17. Naniche, D., Varior-Krishnan, G., Cervoni, F., Wild, T. F., Rossi, B., Rabourdin-Combe, C. & Gerlier, D. ( 1993; ). Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67, 6025–6032.
    [Google Scholar]
  18. Nielsen, L., Blixenkrone-Møller, M., Thylstrup, M., Hansen, N. J. V. & Bolt, G. ( 2001; ). Adaptation of wild-type measles virus to CD46 receptor usage. Arch Virol 146, 197–208.[CrossRef]
    [Google Scholar]
  19. Oldstone, M. B. A., Homann, D., Lewicki, H. & Stevenson, D. ( 2002; ). One, two, or three step: measles virus receptor dance. Virology 299, 162–163.[CrossRef]
    [Google Scholar]
  20. Palosaari, H., Parisien, J.-P., Rodriguez, J. J., Ulane, C. M. & Horvath, C. M. ( 2003; ). STAT protein interference and suppression of cytokine signal transduction by measles virus V protein. J Virol 77, 7635–7644.[CrossRef]
    [Google Scholar]
  21. Patterson, J. B., Thomas, D., Lewicki, H., Billeter, M. A. & Oldstone, M. B. A. ( 2000; ). V and C proteins of measles virus function as virulence factors in vivo. Virology 267, 80–89.[CrossRef]
    [Google Scholar]
  22. Radecke, F. & Billeter, M. A. ( 1996; ). The nonstructural C protein is not essential for multiplication of Edmonston B strain measles virus in cultured cell. Virology 217, 418–421.[CrossRef]
    [Google Scholar]
  23. Radecke, F., Spielhofer, P., Schneider, H., Kaelin, K., Huber, M., Dösch, C., Christiansen, G. & Billeter, M. A. ( 1995; ). Rescue of measles viruses from cloned DNA. EMBO J 14, 5773–5784.
    [Google Scholar]
  24. Reutter, G. L., Cortese-Grogan, C., Wilson, J. & Moyer, S. A. ( 2001; ). Mutations in the measles virus C protein that up regulate viral RNA synthesis. Virology 285, 100–109.[CrossRef]
    [Google Scholar]
  25. Sato, T. A., Fukuda, A. & Sugiura, A. ( 1985; ). Characterization of major structural proteins of measles virus with monoclonal antibodies. J Gen Virol 66, 1397–1409.[CrossRef]
    [Google Scholar]
  26. Schneider, H., Kaelin, K. & Billeter, M. ( 1997; ). Recombinant measles viruses defective for RNA editing and V protein synthesis are viable in cultured cells. Virology 227, 314–322.[CrossRef]
    [Google Scholar]
  27. Schneider, U., von Messling, V., Devaux, P. & Cattaneo, R. ( 2002; ). Efficiency of measles virus entry and dissemination through different receptors. J Virol 76, 7460–7467.[CrossRef]
    [Google Scholar]
  28. Shaffer, J. A., Bellini, W. J. & Rota, P. A. ( 2003; ). The C protein of measles virus inhibits the type I interferon response. Virology 315, 389–397.[CrossRef]
    [Google Scholar]
  29. Takeda, M., Kato, A., Kobune, F., Sakata, H., Li, Y., Shioda, T., Sakai, Y., Asakawa, M. & Nagai, Y. ( 1998; ). Measles virus attenuation associated with transcriptional impediment and a few amino acid changes in the polymerase and accessory proteins. J Virol 72, 8690–8696.
    [Google Scholar]
  30. Takeda, M., Takeuchi, K., Miyajima, N., Kobune, F., Ami, Y., Nagata, N., Suzaki, Y., Nagai, Y. & Tashiro, M. ( 2000; ). Recovery of pathogenic measles virus from cloned cDNA. J Virol 74, 6643–6647.[CrossRef]
    [Google Scholar]
  31. Takeuchi, K., Miyajima, N., Kobune, F. & Tashiro, M. ( 2000; ). Comparative nucleotide sequence analyses of the entire genomes of B95a cell-isolated and Vero cell-isolated measles viruses from the same patient. Virus Genes 20, 253–257.[CrossRef]
    [Google Scholar]
  32. Takeuchi, K., Takeda, M., Miyajima, N., Kobune, F., Tanabayashi, K. & Tashiro, M. ( 2002; ). Recombinant wild-type and Edmonston strain measles viruses bearing heterologous H proteins: role of H protein in cell fusion and host cell specificity. J Virol 76, 4891–4900.[CrossRef]
    [Google Scholar]
  33. Takeuchi, K., Kadota, S., Takeda, M., Miyajima, N. & Nagata, K. ( 2003a; ). Measles virus V protein blocks interferon (IFN)-α/β but not IFN-γ signaling by inhibiting STAT1 and STAT2 phosphorylation. FEBS Lett 545, 177–182.[CrossRef]
    [Google Scholar]
  34. Takeuchi, K., Miyajima, N., Nagata, N., Takeda, M. & Tashiro, M. ( 2003b; ). Wild-type measles virus induces large syncytium formation in primary human small airway epithelial cells by a SLAM(CD150)-independent mechanism. Virus Res 94, 11–16.[CrossRef]
    [Google Scholar]
  35. Tatsuo, H., Ono, N., Tanaka, K. & Yanagi, Y. ( 2000; ). SLAM (CDw150) is a cellular receptor for measles virus. Nature 406, 893–897.[CrossRef]
    [Google Scholar]
  36. Tober, C., Seufert, M., Schneider, H., Billeter, M. A., Johnston, I. C. D., Niewiesk, S., ter Meulen, V. & Schneider-Schaulies, S. ( 1998; ). Expression of measles virus V protein is associated with pathogenicity and control of viral RNA synthesis. J Virol 72, 8124–8132.
    [Google Scholar]
  37. Valsamakis, A., Schneider, H., Auwaerter, P. G., Kaneshima, H., Billeter, M. A. & Griffin, D. E. ( 1998; ). Recombinant measles viruses with mutations in the C, V, or F gene have altered growth phenotypes in vivo. J Virol 72, 7754–7761.
    [Google Scholar]
  38. Vongpunsawad, S., Oezgun, N., Braun, W. & Cattaneo, R. ( 2004; ). Selectively receptor-blind measles viruses: identification of residues necessary for SLAM- or CD46-induced fusion and their localization on a new hemagglutinin structural model. J Virol 78, 302–313.[CrossRef]
    [Google Scholar]
  39. Yokota, S., Saito, H., Kubota, T., Yokosawa, N., Amano, K. & Fujii, N. ( 2003; ). Measles virus suppresses interferon-α signaling pathway: suppression of Jak1 phosphorylation and association of viral accessory proteins, C and V, with interferon-α receptor complex. Virology 306, 135–146.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80287-0
Loading
/content/journal/jgv/10.1099/vir.0.80287-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error