1887

Abstract

Infection of cells by foot-and-mouth disease virus (FMDV) causes the rapid inhibition of cellular cap-dependent protein synthesis that results from cleavage of the translation initiation factor eIF4G, a component of the cap-binding complex eIF4F. Two FMDV proteins, the leader (L) and 3C proteases, have been shown individually to induce cleavage of eIF4GI at distinct sites within baby hamster kidney (BHK) cells. Here, sequential cleavage of eIF4GI by the L and 3C proteases was demonstrated in FMDV-infected BHK cells. The FMDV 3C cleavage site within hamster eIF4GI was localized to a small region (about 40 aa) of the protein, between the sites cleaved by the poliovirus 2A protease and the human immunodeficiency virus type 2 protease. Human eIF4GI was found to be resistant to the action of the FMDV 3C protease. On the basis of amino acid sequence alignments, it was predicted and then verified that substitution of a single amino acid residue within this region of human eIF4GI conferred sensitivity to cleavage by the FMDV 3C protease within cells. Full-length eIF4GI and both forms of the C-terminal cleavage product must be capable of supporting the activity of the FMDV internal ribosome entry site in directing translation initiation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80254-0
2004-10-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/10/vir852953.html?itemId=/content/journal/jgv/10.1099/vir.0.80254-0&mimeType=html&fmt=ahah

References

  1. Allaire, M., Chernaia, M. M., Malcolm, B. A. & James, M. N. G. ( 1994; ). Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature 369, 72–76.[CrossRef]
    [Google Scholar]
  2. Belsham, G. J. ( 1992; ). Dual initiation sites of protein synthesis on foot-and-mouth disease virus RNA are selected following internal entry and scanning of ribosomes in vivo. EMBO J 11, 1105–1110.
    [Google Scholar]
  3. Belsham, G. J. & Jackson, R. J. ( 2000; ). Translation initiation on picornavirus RNA. In Translational Control of Gene Expression Monograph 39, pp. 869–900. Edited by N. Sonenberg, J. W. B. Hershey & M. B. Mathews. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  4. Belsham, G. J., McInerney, G. M. & Ross-Smith, N. ( 2000; ). Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. J Virol 74, 272–280.[CrossRef]
    [Google Scholar]
  5. Bradley, C. A., Padovan, J. C., Thompson, T. L., Benoit, C. A., Chait, B. T. & Rhoads, R. E. ( 2002; ). Mass spectrometric analysis of the N terminus of translational initiation factor eIF4G-1 reveals novel isoforms. J Biol Chem 277, 12559–12571.[CrossRef]
    [Google Scholar]
  6. Byrd, M. P., Zamora, M. & Lloyd, R. E. ( 2002; ). Generation of multiple isoforms of eukaryotic translation initiation factor 4GI by use of alternate translation initiation codons. Mol Cell Biol 22, 4499–4511.[CrossRef]
    [Google Scholar]
  7. Clark, A. T., Robertson, M. E. M., Conn, G. L. & Belsham, G. J. ( 2003; ). Conserved nucleotides within the J domain of the encephalomyocarditis virus internal ribosome entry site are required for activity and for interaction with eIF4G. J Virol 77, 12441–12449.[CrossRef]
    [Google Scholar]
  8. Devaney, M. A., Vakharia, V. N., Lloyd, R. E., Ehrenfeld, E. & Grubman, M. J. ( 1988; ). Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex. J Virol 62, 4407–4409.
    [Google Scholar]
  9. Fuerst, T. R., Niles, E. G., Studier, F. W. & Moss, B. ( 1986; ). Eukaryotic transient expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 83, 8122–8126.[CrossRef]
    [Google Scholar]
  10. Gingras, A.-C., Raught, B. & Sonenberg, N. ( 1999; ). eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68, 913–963.[CrossRef]
    [Google Scholar]
  11. Gradi, A., Imataka, H., Svitkin, Y. V., Rom, E., Raught, B., Morino, S. & Sonenberg, N. ( 1998; ). A novel functional human eukaryotic translation initiation factor 4G. Mol Cell Biol 18, 334–342.
    [Google Scholar]
  12. Gradi, A., Svitkin, Y. V., Sommergruber, W., Imataka, H., Morino, S., Skern, T. & Sonenberg, N. ( 2003; ). Human rhinovirus 2A proteinase cleavage sites in eukaryotic initiation factors (eIF) 4GI and eIF4GII are different. J Virol 77, 5026–5029.[CrossRef]
    [Google Scholar]
  13. Gradi, A., Foeger, N., Strong, R., Svitkin, Y. V., Sonenberg, N., Skern, T. & Belsham, G. J. ( 2004; ). Cleavage of eukaryotic translation initiation factor 4GII within foot-and-mouth disease virus-infected cells: identification of the L-protease cleavage site in vitro. J Virol 78, 3271–3278.[CrossRef]
    [Google Scholar]
  14. Guarné, A., Tormo, J., Kirchweger, R., Pfistermueller, D., Fita, I. & Skern, T. ( 1998; ). Structure of the foot-and-mouth disease virus leader protease: a papain-like fold adapted for self-processing and eIF4G recognition. EMBO J 17, 7469–7479.[CrossRef]
    [Google Scholar]
  15. Hinton, T. M., Ross-Smith, N., Warner, S., Belsham, G. J. & Crabb, B. S. ( 2002; ). Conservation of L and 3C proteinase activities across distantly related aphthoviruses. J Gen Virol 83, 3111–3121.
    [Google Scholar]
  16. Imataka, H. & Sonenberg, N. ( 1997; ). Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Mol Cell Biol 17, 6940–6947.
    [Google Scholar]
  17. Kirchweger, R., Ziegler, E., Lamphear, B. J. & 8 other authors ( 1994; ). Foot-and-mouth disease virus leader proteinase: purification of the Lb form and determination of its cleavage site on eIF-4γ. J Virol 68, 5677–5684.
    [Google Scholar]
  18. Kolupaeva, V. G., Pestova, T. V., Hellen, C. U. T. & Shatsky, I. N. ( 1998; ). Translation eukaryotic initiation factor 4G recognizes a specific structural element within the internal ribosome entry site of encephalomyocarditis virus RNA. J Biol Chem 273, 18599–18604.[CrossRef]
    [Google Scholar]
  19. Kolupaeva, V. G., Lomakin, I. B., Pestova, T. V. & Hellen, C. U. T. ( 2003; ). Eukaryotic initiation factors 4G and 4A mediate conformational changes downstream of the initiation codon of the encephalomyocarditis virus internal ribosomal entry site. Mol Cell Biol 23, 687–698.[CrossRef]
    [Google Scholar]
  20. Lamphear, B. J. & Rhoads, R. E. ( 1996; ). A single amino acid change in protein synthesis initiation factor 4G renders cap-dependent translation resistant to picornaviral 2A proteases. Biochemistry 35, 15726–15733.[CrossRef]
    [Google Scholar]
  21. Lamphear, B. J., Yan, R., Yang, F., Waters, D., Liebig, H.-D., Klump, H., Kuechler, E., Skern, T. & Rhoads, R. E. ( 1993; ). Mapping the cleavage site in protein synthesis initiation factor eIF-4γ of the 2A proteases from human coxsackievirus and rhinovirus. J Biol Chem 268, 19200–19203.
    [Google Scholar]
  22. Li, W., Ross-Smith, N., Proud, C. G. & Belsham, G. J. ( 2001; ). Cleavage of translation initiation factor 4AI (eIF4AI) but not eIF4AII by foot-and-mouth disease virus 3C protease: identification of the eIF4AI cleavage site. FEBS Lett 507, 1–5.[CrossRef]
    [Google Scholar]
  23. Lomakin, I. B., Hellen, C. U. T. & Pestova, T. V. ( 2000; ). Physical association of eukaryotic initiation factor 4G (eIF4G) with eIF4A strongly enhances binding of eIF4G to the internal ribosomal entry site of encephalomyocarditis virus and is required for internal initiation of translation. Mol Cell Biol 20, 6019–6029.[CrossRef]
    [Google Scholar]
  24. López de Quinto, S. & Martínez-Salas, E. ( 2000; ). Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal translation initiation in vivo. RNA 6, 1380–1392.[CrossRef]
    [Google Scholar]
  25. Mader, S., Lee, H., Pause, A. & Sonenberg, N. ( 1995; ). The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4γ and the translational repressors 4E-binding proteins. Mol Cell Biol 15, 4990–4997.
    [Google Scholar]
  26. Medina, M., Domingo, E., Brangwyn, J. K. & Belsham, G. J. ( 1993; ). The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology 194, 355–359.[CrossRef]
    [Google Scholar]
  27. Ohlmann, T., Prévôt, D., Décimo, D., Roux, F., Garin, J., Morley, S. J. & Darlix, J.-L. ( 2002; ). In vitro cleavage of eIF4GI but not eIF4GII by HIV-1 protease and its effects on translation in the rabbit reticulocyte lysate system. J Mol Biol 318, 9–20.[CrossRef]
    [Google Scholar]
  28. Piccone, M. E., Rieder, E., Mason, P. W. & Grubman, M. J. ( 1995; ). The foot-and-mouth disease virus leader proteinase gene is not required for viral replication. J Virol 69, 5376–5382.
    [Google Scholar]
  29. Prévôt, D., Décimo, D., Herbreteau, C. H., Roux, F., Garin, J., Darlix, J.-L. & Ohlmann, T. ( 2003; ). Characterization of a novel RNA-binding region of eIF4GI critical for ribosomal scanning. EMBO J 22, 1909–1921.[CrossRef]
    [Google Scholar]
  30. Roberts, P. J. & Belsham, G. J. ( 1995; ). Identification of critical amino acids within the foot-and-mouth disease virus leader protein, a cysteine protease. Virology 213, 140–146.[CrossRef]
    [Google Scholar]
  31. Roberts, L. O., Seamons, R. A. & Belsham, G. J. ( 1998; ). Recognition of picornavirus internal ribosome entry sites within cells; influence of cellular and viral proteins. RNA 4, 520–529.[CrossRef]
    [Google Scholar]
  32. Ryan, M. D. & Flint, M. ( 1997; ). Virus-encoded proteinases of the picornavirus super-group. J Gen Virol 78, 699–723.
    [Google Scholar]
  33. Sakoda, Y., Ross-Smith, N., Inoue, T. & Belsham, G. J. ( 2001; ). An attenuating mutation in the 2A protease of swine vesicular disease virus, a picornavirus, regulates cap- and internal ribosome entry site-dependent protein synthesis. J Virol 75, 10643–10650.[CrossRef]
    [Google Scholar]
  34. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Sangar, D. V., Newton, S. E., Rowlands, D. J. & Clarke, B. E. ( 1987; ). All foot and mouth disease virus serotypes initiate protein synthesis at two separate AUGs. Nucleic Acids Res 15, 3305–3315.[CrossRef]
    [Google Scholar]
  36. Stassinopoulos, I. A. & Belsham, G. J. ( 2001; ). A novel protein–RNA binding assay: functional interactions of the foot-and-mouth disease virus internal ribosome entry site with cellular proteins. RNA 7, 114–122.[CrossRef]
    [Google Scholar]
  37. Willcocks, M. M., Carter, M. J. & Roberts, L. O. ( 2004; ). Cleavage of eukaryotic initiation factor eIF4G and inhibition of host-cell protein synthesis during feline calicivirus infection. J Gen Virol 85, 1125–1130.[CrossRef]
    [Google Scholar]
  38. Yan, R., Rychlik, W., Etchison, D. & Rhoads, R. E. ( 1992; ). Amino acid sequence of the human protein synthesis initiation factor eIF-4γ. J Biol Chem 267, 23226–23231.
    [Google Scholar]
  39. Zamora, M., Marissen, W. E. & Lloyd, R. E. ( 2002; ). Multiple eIF4GI-specific protease activities present in uninfected and poliovirus-infected cells. J Virol 76, 165–177.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80254-0
Loading
/content/journal/jgv/10.1099/vir.0.80254-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error