1887

Abstract

Epstein–Barr virus (EBV) nuclear antigen 1 (EBNA-1) plays key roles in both the regulation of gene expression and the replication of the EBV genome in latently infected cells. To characterize the RNA-binding activity of EBNA-1, it was demonstrated that EBNA-1 binds efficiently to RNA homopolymers that are composed of poly(G) and weakly to those composed of poly(U). All three RGG boxes of EBNA-1 contributed additively to poly(G)-binding activity and could mediate RNA binding when attached to a heterologous protein in an RNA gel mobility-shift assay. -transcribed EBV and non-EBV RNA probes revealed that EBNA-1 bound to most RNAs examined and the affinity increased as the content of G and U increased, as demonstrated in competition assays. Among these probes, the 5′ non-coding region (NCR) (nt 131–278) of hepatitis C virus RNA appeared to be the strongest competitor for EBNA-1 binding to the EBV-encoded small nuclear RNA 1 (EBER1) probe, whereas a mutant 5′ NCR RNA with partially disrupted secondary structure was a weak competitor. Furthermore, the interaction of endogenous EBNA-1 and EBER1 in EBV-infected cells was demonstrated by a ribonucleoprotein immunoprecipitation assay. These results revealed that EBNA-1 is a DNA-binding protein with strong binding activity to a relatively broad spectrum of RNA and suggested an additional biological impact of EBNA-1 through its ability to bind to RNA.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80239-0
2004-10-01
2020-05-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/10/vir852755.html?itemId=/content/journal/jgv/10.1099/vir.0.80239-0&mimeType=html&fmt=ahah

References

  1. Ali N., Siddiqui A. 1997; The La antigen binds 5′ noncoding region of the hepatitis C virus RNA in the context of the initiator AUG codon and stimulates internal ribosome entry site-mediated translation. Proc Natl Acad Sci U S A 94:2249–2254 [CrossRef]
    [Google Scholar]
  2. Ambinder R. F., Shah W. A., Rawlins D. R., Hayward G. S., Hayward S. D. 1990; Definition of the sequence requirements for binding of the EBNA-1 protein to its palindromic target sites in Epstein-Barr virus DNA. J Virol 64:2369–2379
    [Google Scholar]
  3. Ambinder R. F., Mullen M. A., Chang Y.-N., Hayward G. S., Hayward S. D. 1991; Functional domains of Epstein-Barr virus nuclear antigen EBNA-1. J Virol 65:1466–1478
    [Google Scholar]
  4. Attrill H. L., Cumming S. A., Clements J. B., Graham S. V. 2002; The herpes simplex virus type 1 US11 protein binds the coterminal UL12, UL13, and UL14 RNAs and regulates UL13 expression in vivo. J Virol 76:8090–8100 [CrossRef]
    [Google Scholar]
  5. Belsham G. J., Sonenberg N., Svitkin Y. V. 1995; The role of the La autoantigen in internal initiation. Curr Top Microbiol Immunol 203:85–98
    [Google Scholar]
  6. Bochkarev A., Barwell J. A., Pfuetzner R. A., Bochkareva E., Frappier L., Edwards A. M. 1996; Crystal structure of the DNA-binding domain of the Epstein–Barr virus origin binding protein, EBNA1, bound to DNA. Cell 84:791–800 [CrossRef]
    [Google Scholar]
  7. Cassiday L. A., Maher L. J. III 2002; Having it both ways: transcription factors that bind DNA and RNA. Nucleic Acids Res 30:4118–4126 [CrossRef]
    [Google Scholar]
  8. Chang Y., Tung C.-H., Huang Y.-T., Lu J., Chen J.-Y., Tsai C.-H. 1999; Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J Virol 73:8857–8866
    [Google Scholar]
  9. Chen M.-R., Hsu T.-Y., Chen J.-Y., Yang C.-S. 1990; Molecular characterization of a cDNA clone encoding the Epstein-Barr virus (EBV) DNase. J Virol Methods 29:127–141 [CrossRef]
    [Google Scholar]
  10. Chen M.-R., Middeldorp J. M., Hayward S. D. 1993; Separation of the complex DNA binding domain of EBNA-1 into DNA recognition and dimerization subdomains of novel structure. J Virol 67:4875–4885
    [Google Scholar]
  11. Chen M.-R., Zong J., Hayward S. D. 1994; Delineation of a 16 amino acid sequence that forms a core DNA recognition motif in the Epstein-Barr virus EBNA-1 protein. Virology 205:486–495 [CrossRef]
    [Google Scholar]
  12. Chen M.-R., Yang J.-F., Wu C.-W., Middeldorp J. M., Chen J.-Y. 1998; Physical association between the EBV protein EBNA-1 and P32/TAP/hyaluronectin. J Biomed Sci 5:173–179 [CrossRef]
    [Google Scholar]
  13. Chen M.-R., Tsai C.-H., Wu F.-F., Kan S.-H., Yang C.-S., Chen J.-Y. 1999; The major immunogenic epitopes of Epstein–Barr virus (EBV) nuclear antigen 1 are encoded by sequence domains which vary among nasopharyngeal carcinoma biopsies and EBV-associated cell lines. J Gen Virol 80:447–455
    [Google Scholar]
  14. Chen M.-R., Liu M.-Y., Hsu S.-M., Fong C.-C., Chen C.-J., Chen I.-H., Hsu M.-M., Yang C.-S., Chen J.-Y. 2001; Use of bacterially expressed EBNA-1 protein cloned from a nasopharyngeal carcinoma (NPC) biopsy as a screening test for NPC patients. J Med Virol 64:51–57 [CrossRef]
    [Google Scholar]
  15. Cobianchi F., Karpel R. L., Williams K. R., Notario V., Wilson S. H. 1988; Mammalian heterogeneous nuclear ribonucleoprotein complex protein A1. Large-scale overproduction in Escherichia coli and cooperative binding to single-stranded nucleic acids. J Biol Chem 263:1063–1071
    [Google Scholar]
  16. Fu X.-D. 1995; The superfamily of arginine/serine-rich splicing factors. RNA 1:663–680
    [Google Scholar]
  17. Hearing J. C., Levine A. J. 1985; The Epstein-Barr virus nuclear antigen ( Bam HI K antigen) is a single-stranded DNA binding phosphoprotein. Virology 145:105–116 [CrossRef]
    [Google Scholar]
  18. Helbig R., Fackelmayer F. O. 2003; Scaffold attachment factor A (SAF-A) is concentrated in inactive X chromosome territories through its RGG domain. Chromosoma 112:173–182 [CrossRef]
    [Google Scholar]
  19. Holcik M., Korneluk R. G. 2000; Functional characterization of the X-linked inhibitor of apoptosis (XIAP) internal ribosome entry site element: role of La autoantigen in XIAP translation. Mol Cell Biol 20:4648–4657 [CrossRef]
    [Google Scholar]
  20. Huber M. D., Dworet J. H., Shire K., Frappier L., McAlear M. A. 2000; The budding yeast homolog of the human EBNA1-binding protein 2 (Ebp2p) is an essential nucleolar protein required for pre-rRNA processing. J Biol Chem 275:28764–28773 [CrossRef]
    [Google Scholar]
  21. Kapoor P., Frappier L. 2003; EBNA1 partitions Epstein-Barr virus plasmids in yeast cells by attaching to human EBNA1-binding protein 2 on mitotic chromosomes. J Virol 77:6946–6956 [CrossRef]
    [Google Scholar]
  22. Kieff E. 1996; Epstein-Barr virus and its replication. In Fields Virology , 3rd edn. pp  2343–2396 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott-Raven;
    [Google Scholar]
  23. Kienzle N., Young D. B., Liaskou D., Buck M., Greco S., Sculley T. B. 1999; Intron retention may regulate expression of Epstein-Barr virus nuclear antigen 3 family genes. J Virol 73:1195–1204
    [Google Scholar]
  24. Kiledjian M., Dreyfuss G. 1992; Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J 11:2655–2664
    [Google Scholar]
  25. Krainer A. R., Conway G. C., Kozak D. 1990; Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells. Genes Dev 4:1158–1171 [CrossRef]
    [Google Scholar]
  26. Kube D., Vockerodt M., Weber O. 8 other authors 1999; Expression of Epstein-Barr virus nuclear antigen 1 is associated with enhanced expression of CD25 in the Hodgkin cell line L428. J Virol 73:1630–1636
    [Google Scholar]
  27. Lerga A., Hallier M., Delva L., Orvain C., Gallais I., Marie J., Moreau-Gachelin F. 2001; Identification of an RNA binding specificity for the potential splicing factor TLS. J Biol Chem 276:6807–6816 [CrossRef]
    [Google Scholar]
  28. Li C., Ai L.-S., Lin C.-H., Hsieh M., Li Y.-C., Li S.-Y. 1998; Protein N -arginine methylation in adenosine dialdehyde-treated lymphoblastoid cells. Arch Biochem Biophys 351:53–59 [CrossRef]
    [Google Scholar]
  29. Mackey D., Middleton T., Sugden B. 1995; Multiple regions within EBNA1 can link DNAs. J Virol 69:6199–6208
    [Google Scholar]
  30. Manley J. L., Tacke R. 1996; SR proteins and splicing control. Genes Dev 10:1569–1579 [CrossRef]
    [Google Scholar]
  31. Maraia R. J., Intine R. V. A. 2001; Recognition of nascent RNA by the human La antigen: conserved and divergent features of structure and function. Mol Cell Biol 21:367–379 [CrossRef]
    [Google Scholar]
  32. Marechal V., Dehee A., Chikhi-Brachet R., Piolot T., Coppey-Moisan M., Nicolas J.-C. 1999; Mapping EBNA-1 domains involved in binding to metaphase chromosomes. J Virol 73:4385–4392
    [Google Scholar]
  33. Mears W. E., Rice S. A. 1996; The RGG box motif of the herpes simplex virus ICP27 protein mediates an RNA-binding activity and determines in vivo methylation. J Virol 70:7445–7453
    [Google Scholar]
  34. Middleton T., Sugden B. 1992; EBNA1 can link the enhancer element to the initiator element of the Epstein-Barr virus plasmid origin of DNA replication. J Virol 66:489–495
    [Google Scholar]
  35. Miller M. M., Read L. K. 2003; Trypanosoma brucei : functions of RBP16 cold shock and RGG domains in macromolecular interactions. Exp Parasitol 105:140–148 [CrossRef]
    [Google Scholar]
  36. Niranjanakumari S., Lasda E., Brazas R., Garcia-Blanco M. A. 2002; Reversible cross-linking combined with immunoprecipitation to study RNA–protein interactions in vivo. Methods 26:182–190 [CrossRef]
    [Google Scholar]
  37. Pannone B. K., Xue D., Wolin S. L. 1998; A role for the yeast La protein in U6 snRNP assembly: evidence that the La protein is a molecular chaperone for RNA polymerase III transcripts. EMBO J 17:7442–7453 [CrossRef]
    [Google Scholar]
  38. Petersen-Mahrt S. K., Estmer C., Öhrmalm C., Matthews D. A., Russell W. C., Akusjärvi G. 1999; The splicing factor-associated protein, p32, regulates RNA splicing by inhibiting ASF/SF2 RNA binding and phosphorylation. EMBO J 18:1014–1024 [CrossRef]
    [Google Scholar]
  39. Polvino-Bodnar M., Kiso J., Schaffer P. A. 1988; Mutational analysis of Epstein–Barr virus nuclear antigen 1 (EBNA 1). Nucleic Acids Res 16:3415–3435 [CrossRef]
    [Google Scholar]
  40. Ramos A., Hollingworth D., Pastore A. 2003; G-quartet-dependent recognition between the FMRP RGG box and RNA. RNA 9:1198–1207 [CrossRef]
    [Google Scholar]
  41. Rawlins D. R., Milman G., Hayward S. D., Hayward G. S. 1985; Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. Cell 42:859–868 [CrossRef]
    [Google Scholar]
  42. Sandri-Goldin R. M. 1998; ICP27 mediates HSV RNA export by shuttling through a leucine-rich nuclear export signal and binding viral intronless RNAs through an RGG motif. Genes Dev 12:868–879 [CrossRef]
    [Google Scholar]
  43. Shah W. A., Ambinder R. F., Hayward G. S., Hayward S. D. 1992; Binding of EBNA-1 to DNA creates a protease-resistant domain that encompasses the DNA recognition and dimerization functions. J Virol 66:3355–3362
    [Google Scholar]
  44. Shire K., Ceccarelli D. F. J., Avolio-Hunter T. M., Frappier L. 1999; EBP2, a human protein that interacts with sequences of the Epstein–Barr virus nuclear antigen 1 important for plasmid maintenance. J Virol 73:2587–2595
    [Google Scholar]
  45. Snudden D. K., Hearing J., Smith P. R., Grasser F. A., Griffin B. E. 1994; EBNA-1, the major nuclear antigen of Epstein-Barr virus, resembles ‘RGG’ RNA binding proteins. EMBO J 13:4840–4847
    [Google Scholar]
  46. Srinivas S. K., Sixbey J. W. 1995; Epstein-Barr virus induction of recombinase-activating genes RAG1 and RAG2. J Virol 69:8155–8158
    [Google Scholar]
  47. Sugawara Y., Makuuchi M., Kato N., Shimotohno K., Takada K. 1999a; Enhancement of hepatitis C virus replication by Epstein-Barr virus-encoded nuclear antigen 1. EMBO J 18:5755–5760 [CrossRef]
    [Google Scholar]
  48. Sugawara Y., Mizugaki Y., Uchida T., Torii T., Imai S., Makuuchi M., Takada K. 1999b; Detection of Epstein–Barr virus (EBV) in hepatocellular carcinoma tissue: a novel EBV latency characterized by the absence of EBV-encoded small RNA expression. Virology 256:196–202 [CrossRef]
    [Google Scholar]
  49. Swanson M. S., Dreyfuss G. 1988; Classification and purification of proteins of heterogeneous nuclear ribonucleoprotein particles by RNA-binding specificities. Mol Cell Biol 8:2237–2241
    [Google Scholar]
  50. Vanhamme L., Perez-Morga D., Marchal C. 8 other authors 1998; Trypanosoma brucei TBRGG1, a mitochondrial oligo(U)-binding protein that co-localizes with an in vitro RNA editing activity. J Biol Chem 273:21825–21833 [CrossRef]
    [Google Scholar]
  51. Van Horn D. J., Yoo C. J., Xue D., Shi H., Wolin S. L. 1997; The La protein in Schizosaccharomyces pombe : a conserved yet dispensable phosphoprotein that functions in tRNA maturation. RNA 3:1434–1443
    [Google Scholar]
  52. Van Scoy S., Watakabe I., Krainer A. R., Hearing J. 2000; Human p32: a coactivator for Epstein–Barr virus nuclear antigen-1-mediated transcriptional activation and possible role in viral latent cycle DNA replication. Virology 275:145–157 [CrossRef]
    [Google Scholar]
  53. Wang Y., Finan J. E., Middeldorp J. M., Hayward S. D. 1997; P32/TAP, a cellular protein that interacts with EBNA-1 of Epstein–Barr virus. Virology 236:18–29 [CrossRef]
    [Google Scholar]
  54. Yang T.-H., Tsai W.-H., Lee Y.-M., Lei H.-Y., Lai M.-Y., Chen D.-S., Yeh N.-H., Lee S.-C. 1994; Purification and characterization of nucleolin and its identification as a transcription repressor. Mol Cell Biol 14:6068–6074 [CrossRef]
    [Google Scholar]
  55. Yates J. L., Camiolo S. M. 1988; Dissection of DNA replication and enhancer activation functions of Epstein-Barr virus nuclear antigen 1. Cancer Cells 6:197–205
    [Google Scholar]
  56. Yen J.-H., Chang S. C., Hu C.-R., Chu S.-C., Lin S.-S., Hsieh Y.-S., Chang M.-F. 1995; Cellular proteins specifically bind to the 5′-noncoding region of hepatitis C virus RNA. Virology 208:723–732 [CrossRef]
    [Google Scholar]
  57. Zetterberg H., Jansson A., Rymo L., Chen F., Karlsson A., Klein G., Brodin B. 2002; The Epstein–Barr virus ZEBRA protein activates transcription from the early lytic F promoter by binding to a promoter-proximal AP-1-like site. J Gen Virol 83:2007–2014
    [Google Scholar]
  58. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80239-0
Loading
/content/journal/jgv/10.1099/vir.0.80239-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error