1887

Abstract

The first flavivirus chimera encoding dengue 4 virus (D4) PrM and E structural proteins in a Japanese encephalitis virus (JEV) backbone was successfully generated using the long-PCR based cDNA-fragment stitching (LPCRcFS) technique, demonstrating the technique's applicability for rapid preparation of flavivirus chimeras. The JEV/D4 chimera multiplied at levels equal to JEV and D4 in the mosquito cell line C6/36, while in a mouse neuronal cell line (N2a) JEV replicated efficiently, but JEV/D4 and D4 did not. In mouse challenge experiments, JEV/D4 showed a lack of neuroinvasiveness similar to D4 when inoculated intraperitoneally, but demonstrated attenuated neurovirulence (LD=3·17×10 f.f.u.) when inoculated intracranially. It was also noted that mice receiving intraperitoneal challenge with JEV/D4 possessed D4-specific neutralization antibody and in addition clearly showed resistance to JEV intraperitoneal challenge (at 100×LD). This suggests that immunity to anti-JEV non-structural protein(s) offers protection against JEV infection . Dengue secondary infection was also simulated by challenging mice pre-immunized with dengue 2 virus, with D4 or JEV/D4. Mice showed higher secondary antibody response to challenge with JEV/D4 than to D4, at 210 000 and 37 000 averaged ELISA units, respectively. Taken together, aside from demonstrating the LPCRcFS technique, it could be concluded that the PrM and E proteins are the major determinant of neuroinvasiveness for JEV. It is also expected that the JEV/D4 chimera with its pathogenicity in mice and atypical immune profile, could have applications in dengue prophylactic research, efficacy assessment of dengue vaccines and development of animal research on models of dengue secondary infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80120-0
2004-09-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/9/vir852503.html?itemId=/content/journal/jgv/10.1099/vir.0.80120-0&mimeType=html&fmt=ahah

References

  1. Amberg, S. M., Nestorowicz, A., McCourt, D. W. & Rice, C. M. ( 1994; ). NS2B-3 proteinase-mediated processing in the yellow fever virus structural region: in vitro and in vivo studies. J Virol 68, 3794–3802.
    [Google Scholar]
  2. Blaney, J. E., Jr, Manipon, G. G., Firestone, C. Y., Johnson, D. H., Hanson, C. T., Murphy, B. R. & Whitehead, S. S. ( 2003; ). Mutations which enhance the replication of dengue virus type 4 and an antigenic chimeric dengue virus type 2/4 vaccine candidate in Vero cells. Vaccine 21, 4317–4327.[CrossRef]
    [Google Scholar]
  3. Bray, M. & Lai, C. J. ( 1991; ). Construction of intertypic chimeric dengue viruses by substitution of structural protein genes. Proc Natl Acad Sci U S A 88, 10342–10346.[CrossRef]
    [Google Scholar]
  4. Bundo, K., Matsuo, S. & Igarashi, A. ( 1981; ). Enzyme-linked immunosorbent assay (ELISA) on Japanese encephalitis virus. II. Antibody levels in the patient sera. Trop Med 23, 135–148.
    [Google Scholar]
  5. Burke, D. S. & Monath, T. P. ( 2001; ). Flaviviruses. In Fields Virology, 4th edn, vol. 1, pp. 1043–1125. Edited by D. M. Knipe & P. M. Howley. USA: Lipincott Williams & Wilkins.
  6. Campbell, M. S. & Pletnev, A. ( 2000; ). Infectious cDNA clones of Langat tick-borne flavivirus that differ from their parent in peripheral neurovirulence. Virology 269, 225–237.[CrossRef]
    [Google Scholar]
  7. Chambers, T. J., Liang, Y., Droll, D. A., Schlesinger, J. J., Davidson, A. D., Wright, P. J. & Jiang, X. ( 2003; ). Yellow fever virus/dengue-2 virus and yellow fever virus/dengue-4 virus chimeras: biological characterization, immunogenicity, and protection against dengue encephalitis in the mouse model. J Virol 77, 3655–3668.[CrossRef]
    [Google Scholar]
  8. Falgout, B., Bray, M., Schlesinger, J. J. & Lai, C. J. ( 1990; ). Immunization of mice with recombinant vaccinia virus expressing authentic dengue virus nonstructural protein NS1 protects against lethal dengue virus encephalitis. J Virol 64, 4356–4363.
    [Google Scholar]
  9. Gritsun, T. S. & Gould, E. A. ( 1995; ). Infectious transcripts of tick-borne encephalitis virus, generated in days by RT-PCR. Virology 214, 611–618.[CrossRef]
    [Google Scholar]
  10. Gubler, D. J. ( 2002; ). Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10, 100–103.[CrossRef]
    [Google Scholar]
  11. Guirakhoo, F., Zhang, Z. X., Chambers, T. J., Delagrave, S., Arroyo, J., Barrett, A. D. T. & Monath, T. P. ( 1999; ). Immunogenicity, genetic stability, and protective efficacy of a recombinant, chimeric yellow fever-Japanese encephalitis virus (ChimeriVax-JE) as a live, attenuated vaccine candidate against Japanese encephalitis. Virology 257, 363–372.[CrossRef]
    [Google Scholar]
  12. Guirakhoo, F., Weltzin, R., Chambers, T. J. & 7 other authors ( 2000; ). Recombinant chimeric yellow fever-dengue type 2 virus is immunogenic and protective in nonhuman primates. J Virol 74, 5477–5485.[CrossRef]
    [Google Scholar]
  13. Guirakhoo, F., Arroyo, J., Pugachev, K. V. & 9 other authors ( 2001; ). Construction, safety and immunogenicity in nonhuman primates of a chimeric yellow fever-dengue virus tetravalent vaccine. J Virol 75, 7290–7304.[CrossRef]
    [Google Scholar]
  14. Hall, R. A., Brand, T. N. H., Lobigs, H., Sangster, M. Y., Howard, M. J. & Mackenzie, J. S. ( 1996; ). Protective immune response to the E and N1 protein of Murray Valley encephalitis virus in hybrids of flavivirus-resistant mice. J Gen Virol 77, 1287–1294.[CrossRef]
    [Google Scholar]
  15. Hopp, T. P. & Woods, K. R. ( 1981; ). Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A 78, 3824–3828.[CrossRef]
    [Google Scholar]
  16. Hori, H., May La Linn & Igarashi, A. ( 1986; ). RNA oligonucleotide fingerprint analysis of dengue serotype 3 and 4 viruses isolated in the Southeast Asia. Trop Med 28, 261–268.
    [Google Scholar]
  17. Huang, C. Y., Butrapet, S., Tsuchiya, K. R., Bhamarapravati, N., Gubler, D. J. & Kinney, R. M. ( 2003; ). Dengue 2 PDK-53 virus as a chimeric carrier for the tetravalent dengue vaccine development. J Virol 77, 11436–11447.[CrossRef]
    [Google Scholar]
  18. Igarashi, A. ( 1978; ). Isolation of Singh's Aedes albopictus cell clone sensitive to dengue and chikungunya virus. J Gen Virol 40, 531–544.[CrossRef]
    [Google Scholar]
  19. Igarashi, A. ( 1992; ). Epidemiology and control of Japanese encephalitis. World Health Stat Q 45, 299–305.
    [Google Scholar]
  20. Igarashi, A., Mohamed, H., Yusof, A., Sinniah, M. & Tanaka, H. ( 1995; ). Production of type 2 dengue (D2) monoclonal antibody and cell culture derived D2 antigen for use in dengue IgM capture ELISA. Trop Med 37, 165–143.
    [Google Scholar]
  21. Johansen, C. A., van den Hurk, A. F., Pyke, A. T., Zborowski, P., Phillips, D. A., Mackenzie, J. S. & Ritchie, S. A. ( 2001; ). Entomological investigations of an outbreak of Japanese encephalitis virus in the Torres Strait, Australia, in 1998. J Med Entomol 38, 581–588.[CrossRef]
    [Google Scholar]
  22. Kawano, H., Rostapshov, V., Rosen, L. & Lai, C. J. ( 1993; ). Genetic determinants of dengue type 4 neurovirulence for mice. J Virol 67, 6567–6575.
    [Google Scholar]
  23. Khoretonenko, M. V., Vorovitch, M. F., Zaharova, L. G., Pashvykina, G. V., Ovsyannikova, N. V., Stephenson, J. R., Timofeev, A. V., Altstein, A. D. & Shneider, A. M. ( 2003; ). Vaccinia virus recombinant expressing gene of tick-borne encephalitis virus non-structural NS1 protein elicits protective activity in mice. Immunol Lett 90, 161–163.[CrossRef]
    [Google Scholar]
  24. Kofler, R. M., Heinz, F. X. & Mandl, C. W. ( 2002; ). Capsid protein C of tick-borne encephalitis virus tolerates large internal deletions and is a favourable target for attenuation of virulence. J Virol 76, 3534–3543.[CrossRef]
    [Google Scholar]
  25. Kyte, J. & Doolittle, R. F. ( 1982; ). A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105–132.[CrossRef]
    [Google Scholar]
  26. Lad, V. J. & Gupta, A. K. ( 2002; ). Inhibition of Japanese encephalitis virus maturation and transport in PS cells to cell surface by brefeldin A. Acta Virol 46, 187–190.
    [Google Scholar]
  27. Lai, C.-J., Bray, M., Men, R. & 10 other authors ( 1998; ). Evaluation of molecular strategies to develop a live attenuated dengue vaccine. Clin Diag Virol 10, 173–179.[CrossRef]
    [Google Scholar]
  28. Liljeqvist, S. & Stahl, S. ( 1999; ). Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J Biotechnol 73, 1–33.[CrossRef]
    [Google Scholar]
  29. Lobigs, M. ( 1993; ). Flavivirus premembrane protein cleavage and spike heterodimer secretion requires the function of the viral proteinase NS3. Proc Natl Acad Sci U S A 90, 6218–6222.[CrossRef]
    [Google Scholar]
  30. Mathews, J. H. & Roehrig, J. T. ( 1984; ). Elucidation of the topography and determination of the protective epitopes on the E glycoprotein of Saint Louis encephalitis virus by passive transfer of monoclonal antibodies. J Immunol 132, 1533–1537.
    [Google Scholar]
  31. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. ( 2003; ). A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A 100, 6986–6991.[CrossRef]
    [Google Scholar]
  32. Modis, Y., Ogata, S., Clements, D. & Harrison, S. H. ( 2004; ). Structure of the dengue virus envelope protein after membrane fusion. Nature 22, 313–319.
    [Google Scholar]
  33. Monath, T. P., Soike, K., Levenbook, I. & 9 other authors ( 1999; ). Recombinant, chimeric live attenuated vaccine (ChimeriVax™) incorporating the envelope genes of Japanese encephalitis (SA14-14-2) virus and the capsid and nonstructural genes of yellow fever (17D) virus is safe, immunogenic and protective in non-human primates. Vaccine 17, 1869–1882.[CrossRef]
    [Google Scholar]
  34. Monath, T. P., Guirakhoo, F., Nichols, R. & 9 other authors ( 2003; ). Chimeric live, attenuated vaccine against Japanese encephalitis (ChimeriVax-JE): phase 2 clinical trials for safety and immunogenicity, effect of vaccine dose and schedule, and memory response to challenge with inactivated Japanese encephalitis antigen. J Infect Dis 188, 1213–1230.[CrossRef]
    [Google Scholar]
  35. Morita, K. & Igarashi, A. ( 1989; ). Suspension culture of Aedes albopictus cells for flavivirus mass production. J Tissue Cult Methods 12, 35–37.[CrossRef]
    [Google Scholar]
  36. Morita, K., Tadano, M., Nakaji, S., Kosai, K., Mathenge, E. G. M., Pandey, B. D., Hasebe, F., Inoue, S. & Igarashi, A. ( 2001; ). Locus of a virus neutralization epitope on the Japanese encephalitis virus envelope protein determined by use of long PCR-based region-specific random mutagenesis. Virology 287, 417–426.[CrossRef]
    [Google Scholar]
  37. Pletnev, A. & Men, R. ( 1998; ). Attenuation of the Langat tick-borne flavivirus by chimerization with mosquito-borne flavivirus dengue type 4. Proc Natl Acad Sci U S A 95, 1746–1751.[CrossRef]
    [Google Scholar]
  38. Pletnev, A. G., Bray, M., Huggins, J. & Lai, C. J. ( 1992; ). Construction and characterization of chimeric tick-borne encephalitis/dengue type 4 viruses. Proc Natl Acad Sci U S A 89, 10532–10536.[CrossRef]
    [Google Scholar]
  39. Pletnev, A., Bray, M. & Lai, C. J. ( 1993; ). Chimeric tick-borne encephalitis and dengue type 4 viruses: effects of mutations on neurovirulence in mice. J Virol 67, 4956–4963.
    [Google Scholar]
  40. Pletnev, A., Putnak, R., Speicher, J., Wagar, E. & Vaughn, D. W. ( 2002; ). West Nile virus/dengue type 4 virus chimeras that are reduced in neurovirulence and peripheral virulence without loss of immunogenicity or protective efficacy. Proc Natl Acad Sci U S A 99, 3036–3041.[CrossRef]
    [Google Scholar]
  41. Reed, L. J. & Muench, H. ( 1938; ). A simple method of estimating fifty percent endpoints. Am J Hyg 27, 493–497.
    [Google Scholar]
  42. Schlesinger, J. J., Brandriss, M. W. & Walsh, E. E. ( 1985; ). Protection against 17D yellow fever encephalitis in mice by passive transfer of monoclonal antibodies to the nonstructural glycoprotein gp48 and by active immunization with gp48. J Immunol 135, 2805–2809.
    [Google Scholar]
  43. Schlesinger, J. J., Brandriss, M. W., Cropp, C. B. & Monath, T. P. ( 1986; ). Protection against yellow fever in monkeys by immunization with yellow fever nonstructural protein 1 NS1. Virology 60, 1153–1155.
    [Google Scholar]
  44. Schlesinger, J. J., Brandriss, M. W. & Walsh, E. E. ( 1987; ). Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. J Gen Virol 68, 853–857.[CrossRef]
    [Google Scholar]
  45. Schlesinger, J. J., Brandriss, M. W., Putnak, J. R. & Walsh, E. E. ( 1990; ). Cell surface expression of yellow fever virus non-structural glycoprotein NS1: consequences of interaction with antibody. J Gen Virol 71, 593–599.[CrossRef]
    [Google Scholar]
  46. Solomon, T., Dung, N. M., Kneen, R., Gainsborough, M., Vaughn, D. W. & Khanh, V. T. ( 2000a; ). Japanese encephalitis. J Neurol Neurosurg Psychiatry 68, 405–415.[CrossRef]
    [Google Scholar]
  47. Solomon, T., Dung, N. M., Vaughn, D. W. & 11 other authors ( 2000b; ). Neurological manifestations of dengue infection. Lancet 355, 1053–1059.[CrossRef]
    [Google Scholar]
  48. Sumiyoshi, H., Mori, C., Fuke, I., Morita, K., Kuhara, S., Kondou, J., Kikuchi, Y., Nagamatu, H. & Igarashi, A. ( 1987; ). Complete nucleotide sequence of the Japanese encephalitis virus genome RNA. Virology 161, 497–510.[CrossRef]
    [Google Scholar]
  49. Thant, K. Z., Morita, K. & Igarashi, A. ( 1996; ). Detection of the disease severity-related molecular differences among new Thai dengue-2 isolates in 1993, based on their structural proteins and major non-structural protein NS1 sequences. Microbiol Immunol 40, 205–216.[CrossRef]
    [Google Scholar]
  50. Timofeev, A. V., Ozherelkov, S. V., Pronin, A. V., Deeva, A. V., Karaganova, G. G., Elbert, L. B. & Stephenson, J. R. ( 1998; ). Immunological basis for protection in a murine model of tick-borne encephalitis by a recombinant adenovirus carrying the gene encoding the NS1 non-structural protein. J Gen Virol 79, 689–695.
    [Google Scholar]
  51. WHO ( 1997; ). Dengue haemorrhagic fever: diagnosis, prevention and control. 2nd edn, The World Health Organisation. Geneva. ISBN 92 4 154500 3.
  52. WHO ( 2002; ). Dengue and Dengue Hemorrhagic Fever. Fact sheet No 114. Revised April 2002.
  53. Zhang, W., Chipman, P. R., Corver, J. & 7 other authors ( 2003; ). Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 10, 907–912.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80120-0
Loading
/content/journal/jgv/10.1099/vir.0.80120-0
Loading

Data & Media loading...

Supplements

Synthetic oligonucleotide primers [PDF](116 KB)

PDF

Electron microscopy images of JEV parental and JEV/D4 chimera [PDF](973 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error